
An Architecture for Integrating Large Language

Models with Digital Twins and Automation Systems

Yuchen Xia, Nasser Jazdi, Michael Weyrich

Institute of Industrial Automation and Software Engineering

University of Stuttgart

Stuttgart, Germany

yuchen.xia@ias.uni-stuttgart.de; nasser.jazdi@ias.uni-stuttgart.de; michael.weyrich@ias.uni-stuttgart.de

Abstract— Large Language Models (LLMs) offer flexible

reasoning capability but lack physical embodiment, while

traditional automation systems can execute physical processes

yet lack cognitive capability. This paper presents a layered

architecture that bridges this gap by integrating LLMs with

digital twins and physical automation systems, with practical

case studies as proof of concept. The proposed architecture

comprises three layers: a cognitive layer powered by LLMs, a

bridging layer based on digital twins, and a physical layer

consisting of technical process and automation system. Within

the digital twin layer, we introduce three design paradigms for

structuring information to support effective LLM integration:

state snapshot modeling, event message modeling, and plan

sequence modeling. These paradigms are demonstrated through

prototypical case studies on robotic automation control and

process simulation. To address challenges such as hallucination,

task complexity, and system reliability, we distill a set of

practical strategies, including multi-agent system design, human

validation and test-driven development. Additionally, we

propose the concept of “Return on Intelligence” as a conceptual

tool for evaluating the efficacy of investments in intelligent

automation. This research contributes to the theoretical

foundation and the architecture design for developing

intelligent, adaptive automation systems powered by LLMs.

Keywords— Large Language Model, Industrial Automation

System, Digital Twin, Autonomous System, Intelligent Robotics,

Multi-Agent System

I. INTRODUCTION

Traditional industrial automation systems—comprising

machinery, sensors, actuators, controllers, and manufacturing

execution systems—excel at performing repetitive tasks

efficiently. However, as market demands shift and production

requirements diversify, these rigid systems struggle to adapt.

Factory customers seeking swift, cost-effective

reconfigurations to maintain competitiveness often encounter

knowledge barriers, since modifying and maintaining

automation systems typically require specialized technical

expertise.

Given these challenges, several key questions emerge:

• How can automation systems overcome their inherent

rigidity to become more adaptable and flexible?

• What can provide the intelligence required to handle

complexity, particularly when human expertise may be

limited or unavailable?

• By what mechanisms can automation systems obtain the

intelligence they need for adaptive task-solving?

• From which sources should the information and

knowledge required for intelligent decision-making be

obtained, and how can they be effectively utilized?

One promising answer lies in large language models that

are capable of interpreting textual data and reasoning based

on patterns in existing human knowledge. By integrating

LLMs into automation environments, it becomes possible to

enable more flexible task solving, contextual reasoning, and

user interaction.

However, LLMs lack physical embodiment and cannot

directly perceive or influence real-world systems. To unlock

their potential in industrial automation, they must be tightly

integrated with digital twins—virtual representations of

physical assets and processes that act as a bridge between

physical reality and digital intelligence.

This paper makes the following contributions:

• It proposes a three-layer architecture that connects

LLMs with digital twins and physical automation

systems, enabling intelligent and adaptive control in

industrial environments.

• It distills three design paradigms for representing

dynamic system information in digital twins to

support effective LLMs interaction: system snapshot

modeling, event-log-based modeling, planning-

based modeling.

• The architecture and design are demonstrated with

case studies in realistic use cases, and we propose the

concept of “Return on Intelligence” as a conceptual

tool for evaluating the efficacy of investments in

intelligent automation.

• It outlines practical strategies for addressing common

challenges associated with LLMs, such as

hallucination, by applying multi-agent design,

human validation, and test-driven development.

This paper is presented with the following structure:

Section II introduces the fundamental problem and the

conceptual architecture. Section III introduces the 3-layer

system architecture consisting of the physical, digital twin,

and cognition layers. Section IV presents the design

paradigms in greater depth, focusing on how information is

modeled to support LLM reasoning. Section V showcases

case studies that demonstrate practical implementations of

the proposed architecture. Section VI discusses key insights,

design considerations, and practical recommendations based

on the case studies. Finally, Section VII concludes the paper

with a summary and future work.

II. CONCEPTUAL ARCHITECTURE

This section outlines the fundamental problem and

presents high-level guiding ideas to form the solution.

A. The fundamental problem

LLMs operate within a digital environment and lack

direct grounding in the physical world. Their logical

reasoning is primarily based on semantic relationships and

knowledge patterns derived from textual data, making them

inherently disconnected from real-world processes.

Consequently, LLM cannot directly influence physical

systems without additional mechanisms or interfaces.

Pre-print version for 30ᵗʰ IEEE ETFA 2025. Please check IEEE for the improved, finalized version after Sep. 2025:

https://ieeexplore.ieee.org/xpl/conhome/1000260/all-proceedings; see the footnote for more information.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version

may no longer be accessible.

In this case, please refer to the published version available at: https://ieeexplore.ieee.org/xpl/conhome/1000260/all-proceedings

To address this issue, three fundamental challenges must

be resolved:

1. Converting real-world information into data

representation interpretable by LLM.

2. Establishing connections between the LLM outputs

and actionable operations capable of influencing other

systems.

3. Integrating LLM-driven reasoning to automate task as

requested by users.

B. Conceptual Architecture

To tackle these issues, we propose a three-layer

conceptual architecture that provides a bridge between digital

intelligence and physical automation (Figure 1). Each layer

focuses on a distinct aspect of the system:

Figure 1 Three-Layer Architecture for LLM-Integrated Automation

Systems

• Automation System & Technical Process serve as the

foundational layer, responsible for monitoring and

executing real-world industrial operations through

machinery, sensors, actuators, and controllers.

• Digital Twin System acts as a virtual representation of

the physical system, this middle layer maintains real-

time synchronization with the automation layer. It

structures representation that can be consumed by the

LLM, while also receiving and mediating control or

configuration commands back to the physical system.

• LLM-based System processes structured

representation inputs provided by the digital twin. It

performs reasoning, process represented knowledge,

and generates outputs such as control commands, plans,

or configuration settings. These outputs are then

translated into executable actions through the digital

twin interfaces.

Overall, the digital twin system serves as the bridge to

ground the LLM to the physical reality.

III. SYSTEM ARCHITECTURE

This section explains the technical necessities for system

design, introduces the components required for its

implementation, and illustrates them with various system

diagrams with different levels of detail and focus. Figure 2

shows the system architecture overview.

1 DIN IEC 60050-351 definition of “technical process”: the entirety of interacting

operations within a system through which material, energy, or information is

transformed, transported, or stored.

Figure 2 System Architecture Overview

A. Physical layer:

A technical process 1 , which involves operations of

materials and machines to achieve industrial objectives. First

of all, a technical process can be executed manually, but to

increase efficiency, precision, and productivity, an

automation system is typically employed, reducing manual

effort in executing and controlling the technical process.

In most industrial setups, automation follows a

hierarchical structure known as the automation pyramid [1]:

at the field level, sensors and actuators connect directly to

machines. At the control level, Programmable Logic

Controllers (PLCs) handle real-time control logic. At the

planning level, a Manufacturing Execution System (MES)

coordinates higher-level tasks such as production scheduling.

These control and planning functions are delegated to

specialized software components.

B. Digital twin layer

To enable advanced monitoring, control, maintenance and

optimization of automated processes, the concept of digital

twin is introduced [2]. A digital twin system is a software

system that provides virtual model representation of physical

assets, processes, or systems that enable real-time

synchronization between the digital and physical domains.

To facilitate conceptual understanding and design, we

classify digital twin model representations into two distinct

types in the scope of this paper:

• Information modeling provides a static representation of

entities and processes. It captures descriptive knowledge

about what exists, including various factors and their

relationships.

• Process modeling2, in contrast, is structured around the

dimension of time progression or a sequential order of

execution. Once executed, these models can simulate

dynamic processes and predict system behavior.

This distinction arises from how we model “time”. In

information modeling, time is treated as one dimension

among many dimensions in describing the system’s

composition and entity relationships. By contrast, process

modeling fundamentally organizes the representation around

the progression of time.

2 Minor note: please note that the word “process” has different contextual meanings in

“technical process” (operations within a system) and “process modeling” (way of

modeling); “modeling” is an activity of creating “models”.

This distinction reflects a deeper philosophical view: our

perception of reality is shaped by the experience of time

moving forward—also referred to as the “arrow of time”[3]—

which influences how humans reason. In [4], the author

expresses skepticism about the natural existence of time and

argues that it is a measure derived from how humans perceive

change. These philosophical foundations are relevant when

investigating how knowledge is formed and can be applied to

approximate and control reality. Modeling systems based on

temporal progression is not just an engineering requirement

but also a natural extension of how we form and apply

existing human knowledge—patterns that LLMs can also

learn and utilize, as evidenced in [5], [6], [7].

Returning from our philosophical detour discussed above,

we require a modeling perspective that facilitates a more

transparent and analyzable understanding of how the

automation system should behave over time. The core

objective of (intelligent) automation is to initiate the correct

control action at the appropriate time to execute operations in

the technical process. To evaluate whether the system is

functioning correctly as intended, its actual execution can be

compared against the predefined technical process. Figure 3

introduces such a modeling perspective, illustrating the key

properties and elements of the proposed system architecture.

Figure 3 Representing Technical Processes and Automation

Systems via Information and Process Modeling

On the Technical Process side (Figure 3 left), the

Information Modeling provides a static description of the

system, describing materials, machines and other interested

entities. The process modeling structures the interested

physical parameters into a sequence of system states (t=0, t=1,

t=2, ...) that can represent how the process evolves over time.

On the Automation System side (Figure 3 right), the

process modeling provides the representation of how the

process is executed by applying control actions at each state.

The Information Modeling captures the system’s

composition and functions, including sensors, actuators, and

data models, which provide static knowledge about the

automation system.

The central “match” between the two process models

signifies that the automation system’s control actions must

align with (and execute) the time-based plan defined by the

technical process. Meanwhile, the information modeling on

each side provides the descriptions and relationships

necessary for interpreting the process models.

C. Cognition layer: LLM-based system

By having access to digital twins that provide detailed

data and knowledge about the overall system, the LLM

obtains the necessary information to perform reasoning tasks.

A typical simplified integration mechanism is illustrated in

Figure 4. Within this mechanism, the LLM is implemented as

a software component (referred to as the LLM agent)

responsible for processing information to accomplish a

specific task. It receives system information through a data

interface, then processes this information based on the

instruction of a structured prompt template that guides the

model’s behavior in generating output. The resulting output

from the LLM is then parsed into structured text or executable

code, which can be subsequently handled by the control or

configuration interface provided by the digital twin software.

This interface enables LLM’s reasoning outcomes to

influence and interact with other connected systems.

Figure 4 LLM Agent Integration with Digital Twin for Reasoning

IV. DESIGN PARADIGMS

This section provides a more detailed look at design

paradigms for representing information in the digital twin

layer to support LLM reasoning, as well as task-solving in the

cognitive LLM layer.

A. Digital Twin Design: aiming for LLM integration

Empirical investigation in [8] indicate that LLMs learn

and reason with descriptive knowledge and procedural

knowledge in different ways. Information provided by the

information modeling (descriptive knowledge) and the

process modeling (procedural knowledge) offers the

contextual foundation required for LLM-based task

execution. However, a key challenge lies in designing

operational mechanisms that enable LLMs to effectively

utilize this knowledge.

1) Time-based dynamic mechanisms modeling

Technical processes evolve continuously over time as

real-world transformations unfold, with each transformation

requiring specific decisions or control actions (cf. Figure 3).

From a modeling perspective, this can be represented as a

series of discrete steps (t=0, t=1, t=2, …), each capturing the

relevant system states information.

In practice, this can be implemented using state machines

or system snapshots that record key system properties at

specific moments. The LLM iteratively receives the updated

system state—such as sensor readings or process status—as

input. Since most LLMs operate on textual prompts, the

digital twin must convert each updated system state into a

structured text or code format (such as JSON). For each LLM

invocation, the prompt is updated with the latest information

provided by the digital twin software.

This enables the LLM to reason over dynamically updated

system information and determine the next appropriate

control action. The process is iterative, and further details are

presented in the following section.

2) The three design paradigms

Building on empirical insights from our previous research

and other related literature, we synthesize three primary

paradigms for representing evolving system information and

integrating it into LLM-based control: system snapshot

modeling [9], event log-based modeling [10], [11], and

planning-based modeling[12]. Each approach provides a

distinct mechanism for capturing dynamic system behavior,

offering different design paradigms for LLM integration, as

symbolically illustrated in Figure 5:

Figure 5 Three Design Paradigms for Structuring System

Information to Support LLM Reasoning

Type 1: System Snapshot Modeling (State Modeling)

This mechanism relies on capturing a sequence of

snapshots of the system’s state at discrete time steps (t=1, t=2,

t=3). Figure 5 uses colored symbols to illustrate these

sequential changes in data structure. Each snapshot can use

concrete modeling formats (JSON or a structured text format)

to represent the state of the system at that specific moment.

The LLM system reasons over these representations to derive

control actions for the next state. A case study3 illustrating

this approach can be found in [9].

Type 2: Event-Log-Based Modeling

The information can be modeled in an event log. Planning

and control rely on two key prerequisites: time and

information. These can be technically captured in the form of

an event. In this approach, the system state is represented as

a chronological sequence of event messages. These logs

contain textual information such as system activities, status

updates, or triggering events recorded over time. The LLM

system interprets this temporally ordered sequence to analyze

context and determine appropriate next actions. A case study4

illustrating this approach can be found in [10], [11].

Type 3: Planning-Based Modeling

In this approach, system states are defined in advance as

part of a structured plan that outlines a sequence of predefined

steps required to complete a task. The LLM system monitors

the progress of the plan and compares the current execution

status against the expected status. When discrepancies or

failures are detected (e.g., a step fails or becomes infeasible),

the LLM can propose a revised plan (replanning). A case5

illustrating this approach can be found in [12].

Commonality: Temporal Discretization of

Information

Although these three types involve different design

patterns, they share a common constraint shaped by the

3 State Modeling: GitHub: LLM interacts with simulation models
4 Event-Log-Based: GitHub: LLM controlled automation based on event messages

operational nature of state-of-the-art LLMs (i.e., prompting

and response): to be processed by the LLM, information must

be discretized in time and serialized into text as part of the

prompt during each reasoning cycle (cf. Figure 4).

In Type I, each system state is captured in a snapshot

model at regular time intervals and serialized into text for

insertion into the LLM agent’s prompt. In Type II,

information is modeled as events: the system generates event

entries in chronological order, the LLM agent fetches

relevant information from the event log, and its outputs are

also recorded as events. In Type III, the agent generates a plan

covering a limited future scope. A common feature across

these mechanisms is their ability to encapsulate information

within discretized time slots.

B. LLM System Design: aiming for flexible task automation

This subsection presents a structured approach to

designing LLM-based systems for flexible task automation,

while addressing common challenges such as task complexity,

hallucination and reliability.

1) Task-solving as core function

A key advantage of integrating LLMs into industrial

automation is their ability to solve tasks flexibly. These tasks

typically originate from user needs or from events that arise

during runtime and require a response. A user interface is

required to connect the LLM-agent layer with the digital twin

system, enabling both real-time system monitoring and task-

oriented interaction.

A typical setup uses a front-end application with a chatbot

interface, allowing users to dispatch tasks, view system status,

and receive results. This arrangement enables intuitive, text-

based interaction with processes that may be too intricate for

the user, while the LLM system performs on-demand

reasoning and interprets detailed technical logic.

2) Challenge of task complexity

In practical scenarios, depending on the use case, tasks

can be too complex for a single LLM agent to handle

effectively, often leading to reduced accuracy. A solution to

this challenge is task decomposition combined with a multi-

agent system design (cf. Figure 6). In this approach, the task

is divided into manageable sub-tasks, which are then assigned

to multiple LLM agents. Each agent specializes in a specific

aspect of information processing and reasoning, thus

improving overall performance and accuracy. The

computational complexity of the multi-agent system shall

generally scale proportionally with the complexity of the

original task—that is, more difficult tasks require longer

reasoning processes and more generated text by the agents.

Figure 6 Multi-Agent Design and Tool Integration of LLM System

5 Planning-Based: GitHub: LLM agents plan flexible production tasks

https://github.com/YuchenXia/LLMDrivenSimulation
https://github.com/YuchenXia/LLM4IAS
https://github.com/YuchenXia/GPT4IndustrialAutomation

It is important to note that not all subtasks need to be

handled by LLM agents. Some operations, such as

mathematical calculations, information retrieval, pathfinding,

or executing specialized code for software functions and

robotic skills, can be performed more efficiently and reliably

by dedicated software components, also known as “Tools” (cf.

Figure 6). To improve overall task-solving performance,

LLM agents can be designed to integrate with these tools and

delegate specific functions accordingly.

3) “Hallucination” and task reliability requirements

Hallucination is a broad term referring to cases where an

LLM generates incorrect or undesired outputs. Some studies

categorize hallucinations as either model-intrinsic or model-

extrinsic[13]; however, this distinction alone does not

provide actionable guidance for mitigation and solution in

terms of system engineering. Based on our investigation and

practical experience, we identify four specific types of

hallucinations, each with distinct underlying causes and

corresponding countermeasures.

1. Insufficient Model Knowledge: The model lacks the

required knowledge patterns or semantic associations

for accurate reasoning. This limitation can stem from

various sources, including technical limitations in the

model’s training process, the inherent difficulty of

representing certain domain-specific knowledge in text

form, or gaps in the available human knowledge

captured in the training data.

Countermeasures:

• Choose a more capable base model.

• Fine-tune the model with domain-specific data.

• Integrate external software components for

specialized tasks (e.g., RAG for information lookup

[14], [15], or tool-using [16], [17], [18]).

2. Misalign with intended task and user preference:

Models are typically trained on broad datasets and fine-

tuned for varied tasks; they may not match the specific

goals or style preferences of a particular context. A

correct answer is not necessarily a useful one if it does

not align with the user’s intent. Additionally, imprecise

or poorly formulated prompts can create a mismatch

between the task and the expected output, preventing the

LLM from performing accurate and relevant reasoning.

Countermeasures:

• Select and fine-tune models that align more closely

with the domain and task.

• Provide clearer and instructive prompts.

• Iteratively improve prompts to adapt LLM agent

behavior

3. Ambiguous and general text input: If a task is

insufficiently articulated or ambiguous, the model

cannot execute it with certainty or the required level of

specificity. A lack of contextual clarity in the task or

question description can result in unpredictable outputs,

as the model must infer a direction of reasoning while

generating its response.

Countermeasures:

• Supply additional context or supporting data.

• Ask the user for clarifications to remove ambiguities.

4. Complexity mismatch: The computational complexity

of the reasoning process should generally scale with the

complexity of the task [19]. Short reasoning process

leads to reduced result accuracy.

Countermeasures:

• Decompose large tasks into smaller subtasks using a

multi-agent system [12].

• Apply step-by-step reasoning (Chain-of-Thought

[7], ReAct [20]).

• Extend the reasoning process before the LLM

generates a final decision [20], [21].

4) Necessities of UI design in response to reliability issue

While the system can streamline task-solving by reducing

human effort in information retrieval, data interpretation,

reasoning and content drafting, users must ultimately verify

the outputs to assess plausibility and maintain accountability.

Outputs with imperfect accuracy may still be useful across

different use cases, depending on the specific requirements

and the degree to which they reduce human workload. To

meet practical reliability requirements, the LLM system shall

be limited to functioning as an assistant system, with final

result validation still remaining the user’s responsibility.

Therefore, the user must be an integral part of the system’s

design, acting as both the initiator and validator of the task-

solving process, as illustrated in Figure 6.

V. CASE STUDIES AND APPLICATIONS

This section presents case studies applying the proposed

architecture and design paradigms across varied scenarios.

The architecture is applied to each use case with different

implementation details and technology stacks, prototyped in

a lab setting. Each case is accompanied by demonstration

videos showcasing how intelligent automated systems may

look and operate.

A. Planning-Based Control of a Modular Automation

Robotic System (Design Paradigm Type 3)

This case study [12] demonstrates how LLMs can be

applied to plan and control a modular robotic automation

system. Based on a user-specified task, the system

autonomously generates a corresponding production plan and

executes it through the underlying automation infrastructure.

In this setup, LLM agents are designed to interpret

descriptive information provided by digital twins

(implemented with AAS) and control the physical system

through structured service interfaces, as illustrated in Figure

7. A key feature of this approach is the hierarchical control

service interface within the digital twin, organized into two

abstraction levels: (1) coarse-granular skills, representing

higher-level operations at the automation module level, and

(2) fine-granular functionalities, corresponding to low-

level control actions at the component level.

Figure 7 Task Decomposition Mechanism and the Design of

Manager and Operator Agents.

The LLM agents decompose the user-defined task and

orchestrate a sequential plan combining atomic skills and

functions to accomplish the task. The process modeling is

planning-based: given a user task as input, an LLM agent

first generates a high-level production plan consisting of skill

invocations across relevant automation modules. Each skill is

then further decomposed through LLM reasoning into a

detailed sequence of function calls at the component level.

The LLM agents are systematically designed using a

manager-operator agent hierarchy. The Manager Agent is

responsible for interpreting high-level user-defined tasks,

decomposing them into machine skills, and distributing these

skills across relevant automation modules. When a skill

command reaches a specific automation module, an

Operator Agent takes over, further decomposing the skill

into a detailed sequence of executable function calls at the

component level.

These plans are executed through the digital twin’s

service interfaces. The system state maintains only the

current execution status of the plan and supports replanning

when triggered by exception events or execution failures.

This approach enables dynamic adaptation and flexible

task execution within a modular automation environment,

supported by the intelligent reasoning capabilities of LLMs.

B. Event-Driven Control of Industrial Automation System

with LLM (Design Paradigm Type 2)

This case study [10], [11] presents an event-driven

information modeling approach that continuously provides

real-time data updates to LLM agents. This allows the LLM

to interpret events within the physical automation

environment and make informed decisions to control the

system.

A key innovation in this approach is the semantic

enhancement of raw data from field components through an

event-driven information modeling mechanism. Traditional

industrial automation systems often produce data at a low

semantic level—such as binary signals from sensors or

numeric feedback from actuators—which inherently lack

sufficient semantic clarity for meaningful interpretation. To

address this limitation, the approach introduces a dedicated

Data Observer software component. This Data Observer

continuously monitors low-level signals from field

components, including sensor states, actuator signals, and

controller statuses, and translates these raw data signals into

semantically rich textual event descriptions through

predefined semantic annotations.

These semantically enhanced events are generated

dynamically during system operation and are stored within an

event log memory. The event log provides a clear history of

system activities, forming a basis for LLM-driven reasoning

and control. LLM agents interact with this event log memory

by subscribing to specific event notifications, which are

generated in real-time by the digital twin middleware upon

detecting changes in the automation system or the underlying

technical process.

The agent system in this implementation is specifically

structured around three defined roles: Manager Agent,

Operator Agent, and Summarization Agent. The Manager

Agent listens to high-level user commands or event triggers,

then generates task plans based on the incoming semantically

enriched events. The Operator Agent subsequently executes

these plans by translating high-level task directives into

executable function calls on the field automation

components. The Summarization Agent continuously

observes the event log memory, providing concise

operational summaries to users for improved transparency

and interpretability.

Figure 8 System Component Diagram of the Implementated System

for Event-Driven Control of Industrial Automation System with LLM

The concrete implementation was realized using

established industrial communication protocols and

frameworks such as OPC UA and ROS, as shown in Figure

8. Additionally, the system facilitates structured dataset

creation derived from operational event logs, which further

supports the supervised fine-tuning of LLM models. This

allows improvement of model accuracy, tailoring the LLMs

precisely to downstream industrial control tasks.

C. Reasoning on System State Snapshot of Simulated

Process (Design Paradigm Type 1)

This case study [9] introduces a specialized multi-agent

LLM framework designed explicitly for the autonomous

parametrization of digital twin simulation models.

Parametrization of technical processes typically requires

human knowledge and iterative experimentation. This use

case directly addresses that challenge by deploying multiple

specialized LLM agents to automatically explore the

parameter space of digital twin simulations, identifying

feasible and optimal parameter configurations for simulated

technical processes.

Figure 9 The System Overview of the Use Case: LLM experiments

with Simulation Model to Determine Parameter Settings

In this implementation (Figure 9), the technical process is

modeled as a simulation composed of discrete execution

steps, with each step associated with a corresponding system

state representation. As the simulation progresses, these

snapshots are generated incrementally, providing a structured

context for agent-based reasoning.

The cognition layer is implemented as an LLM-based

system, consisting of four distinct agent roles that operate

iteratively within a structured processing pipeline:

• Observation and Reasoning Agents process raw data

from the ongoing simulation, extract meaningful

insights from state snapshots, and apply heuristic

reasoning to interpret and analyze the observed states.

• Decision Agent generates executable control actions in

the form of function calls, dynamically setting the

simulation parameters to guide the simulation toward

desirable outcomes.

• Summarization Agent consolidates agents output,

executed control, and other system information,

ultimately generating a concise, user-friendly summary

report highlighting effective parameter configuration

identified during the simulation run.

This case study demonstrates the potential of LLM-based

multi-agent systems to autonomously parametrize digital

twin simulations. It highlights a promising research direction

for integrating LLM intelligent reasoning into process

simulation and control.

VI. DISCUSSION

This section discusses key actionable insights from the

proposed architecture and use cases, including when LLMs

are suitable for industrial automation, how integration depth

affects system capabilities, and practical recommendations

for system development. These insights help inform future

development and investment decisions.

A. Application goals: when to apply llm in intelligent

automation?

The application of LLM-based automation is particularly

advantageous when the following characteristics are present:

Knowledge-intensive Tasks: Tasks requiring semantic

interpretation of textual data and perform reasoning based on

existing human knowledge.

Flexibility and On-demand: Tasks requiring

adaptability, where rigid automation falls short. LLMs enable

systems to respond flexibly to varying, unforeseen demands.

Communicative Tasks: Tasks involving text processing,

interaction with user, explanation, insights analysis,

recommendation, and report content generation.

B. The concept of “Return on Intelligence”

To support the evaluation of LLM integration in

automation systems, we introduce the concept of “Return on

Intelligence”, analogous to “Return on Investment” and

illustrated in Figure 10. It refers to the reduction in human

effort, compared to conventional systems, resulting from the

development of an intelligent automation solution.

For instance, LLM-enhanced systems like intelligent

robots, advanced automation, or service chatbots may

initially demand higher human effort during the development

phase (front-loading of efforts, marked with red in Figure 10).

This increased effort can arise from the complexities involved

in system design, knowledge representation modeling, and

integration processes. However, this investment can be

justified by reduced operational effort and greater flexibility

during the system’s usage phase (marked with green in Figure

10)., especially when users face cognitive challenges or

knowledge barriers in accessing and operating automation

systems. Furthermore, consolidating knowledge in digital

twin and enabling its automated utilization through LLM

agents can make the digital twin and LLM a strategic

software asset.

Figure 10 “Return on Intelligence” Concept Principal Illustration.

(The trends of the curves do not represent exact quantitative values.)

For systems handling straightforward, repetitive tasks that

does not require much intelligence, the LLM might yield

Negative “Return on Intelligence”, especially in the case that

a conventional system based on simple rules and algorithmic

logic can have lower development and operation costs and

barely requires human intervention.

The human effort and development cost can vary

depending on the task use case. For example, building a

simple question-answering chatbot may require less effort

than developing a system that integrates digital twins or

simulation-based task-solving capabilities.

While this paper provides a design architecture and

demonstration in a laboratory setup, realizing this “Return on

Intelligence” and making LLM integration economically

beneficial requires further collaboration between industry

and academia for further investigation and to yield evaluation

results on specific use cases.

C. Integration Levels of LLM-based Automation Systems

To discuss how the integration of digital twins and

automation systems transforms LLMs from passive

knowledge processors into intelligent agents capable of real-

world interaction and control, it is useful to examine the

progressive levels of system integration. The table below

compares three stages of LLM integration—standalone

usage, combination with digital twins, and full integration

with automation systems. Each stage enhances the system’s

capabilities in data access, modeling, and interaction,

reflecting a progressive path toward more autonomous and

intelligent automated systems.
Table 1 Integration Levels of LLM-powered Systems

LLM LLM + Digital Twins LLM + Digital Twins +

Automation System

External Knowledge & Data Access

Search engine, text

file attachments,

tools integration

High-fidelity models that

replicate reality

Real-time data

acquisition from the

physical reality

Modeling

Textual data Systematic knowledge and

representation modeling

(serialized as textual data)

Synchronized data for

model update from

physical processes

 Integration of simulation

models (serialized as textual

data)

Feedback to the LLM

reasoning process and

generated commands

Interaction Capability

Primarily text-

based interaction

Interaction with other systems

via digital twin software

interfaces

Perception and actuation

to interact with physical

world

D. Test-driven development

Drawing from our projects experience, we formed a task-

centric, test-driven methodology in building, integrating, and

validating such systems in LLM projects:

1) Define Tasks and Test Cases

Begin by defining the typical tasks intended for

automation. Design typical test cases based on these tasks to

evaluate whether the chosen LLM has the baseline

knowledge and capabilities to perform them successfully.

Automated benchmarking can be first realized using these

test cases, and the quality of LLM responses can be further

automatically evaluated through LLM-as-a-judge methods

[22].

2) Tackle Complexity with Task Decomposition and LLM

Agent Design

If a task is too complex for a single LLM, create a

structured LLM multi-agent system. Break down the task into

smaller, manageable sub-tasks within a task processing

pipeline. Assign specialized LLM agents to sub-tasks that

match the characteristics described in Section VI.A..

3) Integrate Domain-Specific Knowledge and Tools

If the task requires knowledge and capability beyond the

LLM’s built-in capabilities, apply supporting methods such

as tool usage [16], [17], [18], RAG variants [14], [15]. Some

other options are also listed in IV.B.3)., where

“hallucination” problem is discussed.

4) Iterative Testing and Refinement

Use iterative testing throughout development to assess

system performance, uncover issues, and refine the

information processing pipeline. Concentrate the LLM

agent’s reasoning function on sub-tasks where it is most

effective, based on task characteristics (as outlined in VI.A)

and observed benchmark outcomes.

VII. CONCLUSION

This paper presents a three-layer architecture that

integrates LLMs, digital twins, and automation systems to

enable intelligent task automation in industrial environments.

Digital twins serve as the critical bridge between the physical

system and cognitive reasoning, allowing LLMs to perceive

and influence real-world processes. We propose three design

paradigms—state snapshots, event logs, and planning

sequences—to structure system information for LLM-driven

control. To manage task complexity and improve reliability,

we employ multi-agent design and task decomposition

strategies. Realistic use cases demonstrate the practical

implementation and benefits of the proposed approach. We

introduce the concept of “Return on Intelligence” to assess

the value of integrating LLMs into automation systems.

Moving forward, future efforts could focus on connecting

academic research insights with industrial needs,

transforming the proposed architecture into more innovative

and value-adding applications.

ACKNOWLEDGMENT

This work was supported by Stiftung der Deutschen
Wirtschaft (SDW) and the Ministry of Science, Research and
the Arts of the State of Baden-Wuerttemberg within the
support of the projects of the Exzellenzinitiative II.

REFERENCES

[1] M. Weyrich, Industrial Automation and Information Technology.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. doi:

10.1007/978-3-662-69243-1.

[2] B. Ashtari Talkhestani et al., “An architecture of an Intelligent
Digital Twin in a Cyber-Physical Production System,” At-

Automatisierungstechnik, vol. 67, no. 9, pp. 762–782, Sep. 2019,

doi: 10.1515/AUTO-2019-0039/PDF.
[3] A. S. Eddington, The nature of the physical world, vol. 39, no. 5.

Dent, 1928.

[4] J. Barbour, The End of Time: The Next Revolution in Physics.
Weidenfeld & Nicholson, 1999.

[5] W. Gurnee and M. Tegmark, “Language Models Represent Space

and Time,” in International Conference on Learning
Representations, 2023. doi: 10.48550/ARXIV.2310.02207.

[6] I. Dasgupta et al., “Language models show human-like content

effects on reasoning tasks,” Jul. 2022, doi:
10.48550/arXiv.2207.07051.

[7] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in

Large Language Models,” in Advances in Neural Information
Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D.

Belgrave, K. Cho, and A. Oh, Eds., Curran Associates, Inc., 2022,

pp. 24824–24837.
[8] L. Ruis et al., “Procedural Knowledge in Pretraining Drives

Reasoning in Large Language Models,” in ICLR 2025, Nov. 2024.

[Online]. Available:
https://openreview.net/forum?id=1hQKHHUsMx

[9] Y. Xia, D. Dittler, N. Jazdi, H. Chen, and M. Weyrich, “LLM

experiments with simulation: Large Language Model Multi-Agent
System for Simulation Model Parametrization in Digital Twins,”

in 2024 IEEE 29th ETFA, IEEE, Sep. 2024, pp. 1–4. doi:

10.1109/ETFA61755.2024.10710900.
[10] Y. Xia, J. Zhang, N. Jazdi, and M. Weyrich, “Incorporating Large

Language Models into Production Systems for Enhanced Task

Automation and Flexibility,” Automation 2024, Jul. 2024, doi:
10.51202/9783181024379.

[11] Y. Xia, N. Jazdi, J. Zhang, C. Shah, and M. Weyrich, “Control

Industrial Automation System with Large Language Models,” Sep.
2024, doi: 10.48550/arXiv.2409.18009.

[12] Y. Xia, M. Shenoy, N. Jazdi, and M. Weyrich, “Towards

autonomous system: Flexible modular production system
enhanced with large language model agents,” IEEE ETFA, 2023,

doi: 10.1109/ETFA54631.2023.10275362.

[13] Z. Ji et al., “Survey of Hallucination in Natural Language
Generation,” ACM Comput Surv, vol. 55, no. 12, Dec. 2023,

[Online]. Available: https://dl.acm.org/doi/10.1145/3571730

[14] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” in Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.

Balcan, and H. Lin, Eds., Curran Associates, Inc., 2020, pp. 9459–
9474. doi: 10.48550/arXiv.2501.00309.

[15] H. Han et al., “Retrieval-Augmented Generation with Graphs
(GraphRAG),” Dec. 2024, doi: 10.48550/arXiv.2005.11401.

[16] B. Paranjape, S. Lundberg, S. Singh, H. Hajishirzi, L. Zettlemoyer,

and M. T. Ribeiro, “ART: Automatic multi-step reasoning and
tool-use for large language models,” Mar. 2023.

[17] Y. Qin et al., “ToolLLM Facilitating Large Language Models to

Master 16000+ Real-world APIs,” in The 12th International
Conference on Learning Representations, 2024.

[18] Anthropic, “Model Context Protocol (MCP).” [Online]. Available:

https://docs.anthropic.com/en/docs/agents-and-tools/mcp
[19] C. Snell, J. Lee, K. Xu, and A. Kumar, “Scaling LLM Test-Time

Compute Optimally can be More Effective than Scaling Model

Parameters,” Aug. 2024.
[20] S. Yao et al., “ReAct: Synergizing Reasoning and Acting in

Language Models,” in International Conference on Learning

Representations, 2023.
[21] D. Guo et al., “DeepSeek-R1: Incentivizing Reasoning Capability

in LLMs via Reinforcement Learning,” Jan. 2025.

[22] J. Gu et al., “A Survey on LLM-as-a-Judge,” Nov. 2024, [Online].

Available: https://arxiv.org/abs/2411.15594

