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Abstract— Large Language Models (LLMs) offer flexible 

reasoning capability but lack physical embodiment, while 

traditional automation systems can execute physical processes 

yet lack cognitive capability. This paper presents a layered 

architecture that bridges this gap by integrating LLMs with 

digital twins and physical automation systems, with practical 

case studies as proof of concept. The proposed architecture 

comprises three layers: a cognitive layer powered by LLMs, a 

bridging layer based on digital twins, and a physical layer 

consisting of technical process and automation system. Within 

the digital twin layer, we introduce three design paradigms for 

structuring information to support effective LLM integration: 

state snapshot modeling, event message modeling, and plan 

sequence modeling. These paradigms are demonstrated through 

prototypical case studies on robotic automation control and 

process simulation. To address challenges such as hallucination, 

task complexity, and system reliability, we distill a set of 

practical strategies, including multi-agent system design, human 

validation and test-driven development. Additionally, we 

propose the concept of “Return on Intelligence” as a conceptual 

tool for evaluating the efficacy of investments in intelligent 

automation. This research contributes to the theoretical 

foundation and the architecture design for developing 

intelligent, adaptive automation systems powered by LLMs. 

Keywords— Large Language Model, Industrial Automation 

System, Digital Twin, Autonomous System, Intelligent Robotics, 

Multi-Agent System 

I. INTRODUCTION  

Traditional industrial automation systems—comprising 

machinery, sensors, actuators, controllers, and manufacturing 

execution systems—excel at performing repetitive tasks 

efficiently. However, as market demands shift and production 

requirements diversify, these rigid systems struggle to adapt. 

Factory customers seeking swift, cost-effective 

reconfigurations to maintain competitiveness often encounter 

knowledge barriers, since modifying and maintaining 

automation systems typically require specialized technical 

expertise. 

Given these challenges, several key questions emerge:  

• How can automation systems overcome their inherent 

rigidity to become more adaptable and flexible? 

• What can provide the intelligence required to handle 

complexity, particularly when human expertise may be 

limited or unavailable? 

• By what mechanisms can automation systems obtain the 

intelligence they need for adaptive task-solving? 

• From which sources should the information and 

knowledge required for intelligent decision-making be 

obtained, and how can they be effectively utilized? 

One promising answer lies in large language models that 

are capable of interpreting textual data and reasoning based 

on patterns in existing human knowledge. By integrating 

LLMs into automation environments, it becomes possible to 

enable more flexible task solving, contextual reasoning, and 

user interaction. 

However, LLMs lack physical embodiment and cannot 

directly perceive or influence real-world systems. To unlock 

their potential in industrial automation, they must be tightly 

integrated with digital twins—virtual representations of 

physical assets and processes that act as a bridge between 

physical reality and digital intelligence. 

This paper makes the following contributions: 

• It proposes a three-layer architecture that connects 

LLMs with digital twins and physical automation 

systems, enabling intelligent and adaptive control in 

industrial environments. 

• It distills three design paradigms for representing 

dynamic system information in digital twins to 

support effective LLMs interaction: system snapshot 

modeling, event-log-based modeling, planning-

based modeling. 

• The architecture and design are demonstrated with 

case studies in realistic use cases, and we propose the 

concept of “Return on Intelligence” as a conceptual 

tool for evaluating the efficacy of investments in 

intelligent automation. 

• It outlines practical strategies for addressing common 

challenges associated with LLMs, such as 

hallucination, by applying multi-agent design, 

human validation, and test-driven development. 

This paper is presented with the following structure: 

Section II introduces the fundamental problem and the 

conceptual architecture. Section III introduces the 3-layer 

system architecture consisting of the physical, digital twin, 

and cognition layers. Section IV presents the design 

paradigms in greater depth, focusing on how information is 

modeled to support LLM reasoning. Section V showcases 

case studies that demonstrate practical implementations of 

the proposed architecture. Section VI discusses key insights, 

design considerations, and practical recommendations based 

on the case studies. Finally, Section VII concludes the paper 

with a summary and future work. 

II. CONCEPTUAL ARCHITECTURE 

This section outlines the fundamental problem and 

presents high-level guiding ideas to form the solution.  

A. The fundamental problem 

LLMs operate within a digital environment and lack 

direct grounding in the physical world. Their logical 

reasoning is primarily based on semantic relationships and 

knowledge patterns derived from textual data, making them 

inherently disconnected from real-world processes. 

Consequently, LLM cannot directly influence physical 

systems without additional mechanisms or interfaces. 
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To address this issue, three fundamental challenges must 

be resolved: 

1. Converting real-world information into data 

representation interpretable by LLM. 

2. Establishing connections between the LLM outputs 

and actionable operations capable of influencing other 

systems. 

3. Integrating LLM-driven reasoning to automate task as 

requested by users. 

B. Conceptual Architecture 

To tackle these issues, we propose a three-layer 

conceptual architecture that provides a bridge between digital 

intelligence and physical automation (Figure 1). Each layer 

focuses on a distinct aspect of the system: 

 

 
Figure 1 Three-Layer Architecture for LLM-Integrated Automation 

Systems 

• Automation System & Technical Process serve as the 

foundational layer, responsible for monitoring and 

executing real-world industrial operations through 

machinery, sensors, actuators, and controllers. 

• Digital Twin System acts as a virtual representation of 

the physical system, this middle layer maintains real-

time synchronization with the automation layer. It 

structures representation that can be consumed by the 

LLM, while also receiving and mediating control or 

configuration commands back to the physical system. 

• LLM-based System processes structured 

representation inputs provided by the digital twin. It 

performs reasoning, process represented knowledge, 

and generates outputs such as control commands, plans, 

or configuration settings. These outputs are then 

translated into executable actions through the digital 

twin interfaces. 

Overall, the digital twin system serves as the bridge to 

ground the LLM to the physical reality. 

III. SYSTEM ARCHITECTURE 

This section explains the technical necessities for system 

design, introduces the components required for its 

implementation, and illustrates them with various system 

diagrams with different levels of detail and focus. Figure 2 

shows the system architecture overview. 

 
1 DIN IEC 60050-351 definition of “technical process”: the entirety of interacting 

operations within a system through which material, energy, or information is 

transformed, transported, or stored. 

 
Figure 2  System Architecture Overview 

A. Physical layer: 

A technical process 1 , which involves operations of 

materials and machines to achieve industrial objectives. First 

of all, a technical process can be executed manually, but to 

increase efficiency, precision, and productivity, an 

automation system is typically employed, reducing manual 

effort in executing and controlling the technical process. 

In most industrial setups, automation follows a 

hierarchical structure known as the automation pyramid [1]: 

at the field level, sensors and actuators connect directly to 

machines. At the control level, Programmable Logic 

Controllers (PLCs) handle real-time control logic. At the 

planning level, a Manufacturing Execution System (MES) 

coordinates higher-level tasks such as production scheduling. 

These control and planning functions are delegated to 

specialized software components.  

B. Digital twin layer 

To enable advanced monitoring, control, maintenance and 

optimization of automated processes, the concept of digital 

twin is introduced [2]. A digital twin system is a software 

system that provides virtual model representation of physical 

assets, processes, or systems that enable real-time 

synchronization between the digital and physical domains. 

To facilitate conceptual understanding and design, we 

classify digital twin model representations into two distinct 

types in the scope of this paper: 

• Information modeling provides a static representation of 

entities and processes. It captures descriptive knowledge 

about what exists, including various factors and their 

relationships.  

• Process modeling2, in contrast, is structured around the 

dimension of time progression or a sequential order of 

execution. Once executed, these models can simulate 

dynamic processes and predict system behavior. 

This distinction arises from how we model “time”. In 

information modeling, time is treated as one dimension 

among many dimensions in describing the system’s 

composition and entity relationships. By contrast, process 

modeling fundamentally organizes the representation around 

the progression of time. 

2 Minor note: please note that the word “process” has different contextual meanings in 

“technical process” (operations within a system) and “process modeling” (way of 

modeling); “modeling” is an activity of creating “models”. 

                
           

           

                   
                

                    
                 

           

                      

                  

                       

                     

 
 
 
  

  
  
 
  

  
 
  
 
 

      
        

               
   
           

                  

                                       

              

                       
                                           

         
        

    

    

         

       

           

      

  

                
                        

                    
                  

                      

       

        

               

    

       

     



This distinction reflects a deeper philosophical view: our 

perception of reality is shaped by the experience of time 

moving forward—also referred to as the “arrow of time”[3]—

which influences how humans reason. In [4], the author 

expresses skepticism about the natural existence of time and 

argues that it is a measure derived from how humans perceive 

change. These philosophical foundations are relevant when 

investigating how knowledge is formed and can be applied to 

approximate and control reality. Modeling systems based on 

temporal progression is not just an engineering requirement 

but also a natural extension of how we form and apply 

existing human knowledge—patterns that LLMs can also 

learn and utilize, as evidenced in [5], [6], [7]. 

Returning from our philosophical detour discussed above, 

we require a modeling perspective that facilitates a more 

transparent and analyzable understanding of how the 

automation system should behave over time. The core 

objective of (intelligent) automation is to initiate the correct 

control action at the appropriate time to execute operations in 

the technical process. To evaluate whether the system is 

functioning correctly as intended, its actual execution can be 

compared against the predefined technical process. Figure 3 

introduces such a modeling perspective, illustrating the key 

properties and elements of the proposed system architecture.  

 
Figure 3 Representing Technical Processes and Automation 

Systems via Information and Process Modeling 

On the Technical Process side (Figure 3 left), the 

Information Modeling provides a static description of the 

system, describing materials, machines and other interested 

entities. The process modeling structures the interested 

physical parameters into a sequence of system states (t=0, t=1, 

t=2, ...) that can represent how the process evolves over time. 

On the Automation System side (Figure 3 right), the 

process modeling provides the representation of how the 

process is executed by applying control actions at each state. 

The Information Modeling captures the system’s 

composition and functions, including sensors, actuators, and 

data models, which provide static knowledge about the 

automation system. 

The central “match” between the two process models 

signifies that the automation system’s control actions must 

align with (and execute) the time-based plan defined by the 

technical process. Meanwhile, the information modeling on 

each side provides the descriptions and relationships 

necessary for interpreting the process models. 

C. Cognition layer: LLM-based system 

By having access to digital twins that provide detailed 

data and knowledge about the overall system, the LLM 

obtains the necessary information to perform reasoning tasks. 

A typical simplified integration mechanism is illustrated in 

Figure 4. Within this mechanism, the LLM is implemented as 

a software component (referred to as the LLM agent) 

responsible for processing information to accomplish a 

specific task. It receives system information through a data 

interface, then processes this information based on the 

instruction of a structured prompt template that guides the 

model’s behavior in generating output. The resulting output 

from the LLM is then parsed into structured text or executable 

code, which can be subsequently handled by the control or 

configuration interface provided by the digital twin software. 

This interface enables LLM’s reasoning outcomes to 

influence and interact with other connected systems.  

 

 
Figure 4 LLM Agent Integration with Digital Twin for Reasoning 

IV. DESIGN PARADIGMS 

This section provides a more detailed look at design 

paradigms for representing information in the digital twin 

layer to support LLM reasoning, as well as task-solving in the 

cognitive LLM layer. 

A. Digital Twin Design: aiming for LLM integration  

Empirical investigation in [8] indicate that LLMs learn 

and reason with descriptive knowledge and procedural 

knowledge in different ways. Information provided by the 

information modeling (descriptive knowledge) and the 

process modeling (procedural knowledge) offers the 

contextual foundation required for LLM-based task 

execution. However, a key challenge lies in designing 

operational mechanisms that enable LLMs to effectively 

utilize this knowledge.  

1) Time-based dynamic mechanisms modeling 

Technical processes evolve continuously over time as 

real-world transformations unfold, with each transformation 

requiring specific decisions or control actions (cf. Figure 3). 

From a modeling perspective, this can be represented as a 

series of discrete steps (t=0, t=1, t=2, …), each capturing the 

relevant system states information.  

In practice, this can be implemented using state machines 

or system snapshots that record key system properties at 

specific moments. The LLM iteratively receives the updated 

system state—such as sensor readings or process status—as 

input. Since most LLMs operate on textual prompts, the 

digital twin must convert each updated system state into a 

structured text or code format (such as JSON). For each LLM 

invocation, the prompt is updated with the latest information 

provided by the digital twin software. 

This enables the LLM to reason over dynamically updated 

system information and determine the next appropriate 

       

     

             

   

             

   

      

           

        

       

       

     

       

           

           

      

      

        

             

   

           

           

     

  

 

         

       

           

      

    

       

     

                                                                        

                                         

   

         

      

        

               

                   

                                       

      
      

          
       

                    

                   

                    

                          

                
                        



control action. The process is iterative, and further details are 

presented in the following section. 

2) The three design paradigms 

Building on empirical insights from our previous research 

and other related literature, we synthesize three primary 

paradigms for representing evolving system information and 

integrating it into LLM-based control: system snapshot 

modeling [9], event log-based modeling [10], [11], and 

planning-based modeling[12]. Each approach provides a 

distinct mechanism for capturing dynamic system behavior, 

offering different design paradigms for LLM integration, as 

symbolically illustrated in Figure 5: 

 
Figure 5  Three Design Paradigms for Structuring System 

Information to Support LLM Reasoning 

Type 1: System Snapshot Modeling (State Modeling) 

This mechanism relies on capturing a sequence of 

snapshots of the system’s state at discrete time steps (t=1, t=2, 

t=3). Figure 5 uses colored symbols to illustrate these 

sequential changes in data structure. Each snapshot can use 

concrete modeling formats (JSON or a structured text format) 

to represent the state of the system at that specific moment. 

The LLM system reasons over these representations to derive 

control actions for the next state. A case study3 illustrating 

this approach can be found in [9]. 

Type 2: Event-Log-Based Modeling 

The information can be modeled in an event log. Planning 

and control rely on two key prerequisites: time and 

information. These can be technically captured in the form of 

an event. In this approach, the system state is represented as 

a chronological sequence of event messages. These logs 

contain textual information such as system activities, status 

updates, or triggering events recorded over time. The LLM 

system interprets this temporally ordered sequence to analyze 

context and determine appropriate next actions. A case study4 

illustrating this approach can be found in [10], [11]. 

Type 3: Planning-Based Modeling 

In this approach, system states are defined in advance as 

part of a structured plan that outlines a sequence of predefined 

steps required to complete a task. The LLM system monitors 

the progress of the plan and compares the current execution 

status against the expected status. When discrepancies or 

failures are detected (e.g., a step fails or becomes infeasible), 

the LLM can propose a revised plan (replanning). A case5 

illustrating this approach can be found in [12]. 

Commonality: Temporal Discretization of 

Information 

Although these three types involve different design 

patterns, they share a common constraint shaped by the 

 
3 State Modeling: GitHub: LLM interacts with simulation models  
4 Event-Log-Based: GitHub: LLM controlled automation based on event messages  

operational nature of state-of-the-art LLMs (i.e., prompting 

and response): to be processed by the LLM, information must 

be discretized in time and serialized into text as part of the 

prompt during each reasoning cycle (cf. Figure 4). 

In Type I, each system state is captured in a snapshot 

model at regular time intervals and serialized into text for 

insertion into the LLM agent’s prompt. In Type II, 

information is modeled as events: the system generates event 

entries in chronological order, the LLM agent fetches 

relevant information from the event log, and its outputs are 

also recorded as events. In Type III, the agent generates a plan 

covering a limited future scope. A common feature across 

these mechanisms is their ability to encapsulate information 

within discretized time slots.  

B. LLM System Design: aiming for flexible task automation 

This subsection presents a structured approach to 

designing LLM-based systems for flexible task automation, 

while addressing common challenges such as task complexity, 

hallucination and reliability. 

1) Task-solving as core function 

A key advantage of integrating LLMs into industrial 

automation is their ability to solve tasks flexibly. These tasks 

typically originate from user needs or from events that arise 

during runtime and require a response. A user interface is 

required to connect the LLM-agent layer with the digital twin 

system, enabling both real-time system monitoring and task-

oriented interaction. 

A typical setup uses a front-end application with a chatbot 

interface, allowing users to dispatch tasks, view system status, 

and receive results. This arrangement enables intuitive, text-

based interaction with processes that may be too intricate for 

the user, while the LLM system performs on-demand 

reasoning and interprets detailed technical logic. 

2) Challenge of task complexity  

In practical scenarios, depending on the use case, tasks 

can be too complex for a single LLM agent to handle 

effectively, often leading to reduced accuracy. A solution to 

this challenge is task decomposition combined with a multi-

agent system design (cf. Figure 6). In this approach, the task 

is divided into manageable sub-tasks, which are then assigned 

to multiple LLM agents. Each agent specializes in a specific 

aspect of information processing and reasoning, thus 

improving overall performance and accuracy. The 

computational complexity of the multi-agent system shall 

generally scale proportionally with the complexity of the 

original task—that is, more difficult tasks require longer 

reasoning processes and more generated text by the agents.  

 
Figure 6 Multi-Agent Design and Tool Integration of LLM System 

5 Planning-Based: GitHub: LLM agents plan flexible production tasks 
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It is important to note that not all subtasks need to be 

handled by LLM agents. Some operations, such as 

mathematical calculations, information retrieval, pathfinding, 

or executing specialized code for software functions and 

robotic skills, can be performed more efficiently and reliably 

by dedicated software components, also known as “Tools” (cf. 

Figure 6). To improve overall task-solving performance, 

LLM agents can be designed to integrate with these tools and 

delegate specific functions accordingly. 

3) “Hallucination” and task reliability requirements 

Hallucination is a broad term referring to cases where an 

LLM generates incorrect or undesired outputs. Some studies 

categorize hallucinations as either model-intrinsic or model-

extrinsic[13]; however, this distinction alone does not 

provide actionable guidance for mitigation and solution in 

terms of system engineering. Based on our investigation and 

practical experience, we identify four specific types of 

hallucinations, each with distinct underlying causes and 

corresponding countermeasures. 

1. Insufficient Model Knowledge: The model lacks the 

required knowledge patterns or semantic associations 

for accurate reasoning. This limitation can stem from 

various sources, including technical limitations in the 

model’s training process, the inherent difficulty of 

representing certain domain-specific knowledge in text 

form, or gaps in the available human knowledge 

captured in the training data. 

Countermeasures:  

• Choose a more capable base model. 

• Fine-tune the model with domain-specific data.  

• Integrate external software components for 

specialized tasks (e.g., RAG for information lookup 

[14], [15], or tool-using [16], [17], [18]).  

2. Misalign with intended task and user preference: 

Models are typically trained on broad datasets and fine-

tuned for varied tasks; they may not match the specific 

goals or style preferences of a particular context. A 

correct answer is not necessarily a useful one if it does 

not align with the user’s intent. Additionally, imprecise 

or poorly formulated prompts can create a mismatch 

between the task and the expected output, preventing the 

LLM from performing accurate and relevant reasoning. 

Countermeasures:  

• Select and fine-tune models that align more closely 

with the domain and task. 

• Provide clearer and instructive prompts.  

• Iteratively improve prompts to adapt LLM agent 

behavior 

3. Ambiguous and general text input: If a task is 

insufficiently articulated or ambiguous, the model 

cannot execute it with certainty or the required level of 

specificity. A lack of contextual clarity in the task or 

question description can result in unpredictable outputs, 

as the model must infer a direction of reasoning while 

generating its response.  

Countermeasures:  

• Supply additional context or supporting data. 

• Ask the user for clarifications to remove ambiguities. 

4. Complexity mismatch: The computational complexity 

of the reasoning process should generally scale with the 

complexity of the task [19]. Short reasoning process 

leads to reduced result accuracy.  

Countermeasures: 

• Decompose large tasks into smaller subtasks using a 

multi-agent system [12]. 

• Apply step-by-step reasoning (Chain-of-Thought 

[7], ReAct [20]). 

• Extend the reasoning process before the LLM 

generates a final decision [20], [21]. 

4) Necessities of UI design in response to reliability issue 

While the system can streamline task-solving by reducing 

human effort in information retrieval, data interpretation, 

reasoning and content drafting, users must ultimately verify 

the outputs to assess plausibility and maintain accountability. 

Outputs with imperfect accuracy may still be useful across 

different use cases, depending on the specific requirements 

and the degree to which they reduce human workload. To 

meet practical reliability requirements, the LLM system shall 

be limited to functioning as an assistant system, with final 

result validation still remaining the user’s responsibility. 

Therefore, the user must be an integral part of the system’s 

design, acting as both the initiator and validator of the task-

solving process, as illustrated in Figure 6.  

V. CASE STUDIES AND APPLICATIONS 

This section presents case studies applying the proposed 

architecture and design paradigms across varied scenarios. 

The architecture is applied to each use case with different 

implementation details and technology stacks, prototyped in 

a lab setting. Each case is accompanied by demonstration 

videos showcasing how intelligent automated systems may 

look and operate.  

A. Planning-Based Control of a Modular Automation 

Robotic System (Design Paradigm Type 3) 

This case study [12] demonstrates how LLMs can be 

applied to plan and control a modular robotic automation 

system. Based on a user-specified task, the system 

autonomously generates a corresponding production plan and 

executes it through the underlying automation infrastructure.  

In this setup, LLM agents are designed to interpret 

descriptive information provided by digital twins 

(implemented with AAS) and control the physical system 

through structured service interfaces, as illustrated in Figure 

7. A key feature of this approach is the hierarchical control 

service interface within the digital twin, organized into two 

abstraction levels: (1) coarse-granular skills, representing 

higher-level operations at the automation module level, and 

(2) fine-granular functionalities, corresponding to low-

level control actions at the component level. 

 
Figure 7 Task Decomposition Mechanism and the Design of 

Manager and Operator Agents. 

                 

             

               

                  

                            

               

             

 

                        

               

                   

               

                   

               

             

      

             

                 

    

          

                 

              

      

      

      

        

        

        

              

      

      

      

     

     

     

           

              



The LLM agents decompose the user-defined task and 

orchestrate a sequential plan combining atomic skills and 

functions to accomplish the task. The process modeling is 

planning-based: given a user task as input, an LLM agent 

first generates a high-level production plan consisting of skill 

invocations across relevant automation modules. Each skill is 

then further decomposed through LLM reasoning into a 

detailed sequence of function calls at the component level. 

The LLM agents are systematically designed using a 

manager-operator agent hierarchy. The Manager Agent is 

responsible for interpreting high-level user-defined tasks, 

decomposing them into machine skills, and distributing these 

skills across relevant automation modules. When a skill 

command reaches a specific automation module, an 

Operator Agent takes over, further decomposing the skill 

into a detailed sequence of executable function calls at the 

component level. 

These plans are executed through the digital twin’s 

service interfaces. The system state maintains only the 

current execution status of the plan and supports replanning 

when triggered by exception events or execution failures.  

This approach enables dynamic adaptation and flexible 

task execution within a modular automation environment, 

supported by the intelligent reasoning capabilities of LLMs. 

B. Event-Driven Control of Industrial Automation System 

with LLM (Design Paradigm Type 2) 

This case study [10], [11] presents an event-driven 

information modeling approach that continuously provides 

real-time data updates to LLM agents. This allows the LLM 

to interpret events within the physical automation 

environment and make informed decisions to control the 

system. 

A key innovation in this approach is the semantic 

enhancement of raw data from field components through an 

event-driven information modeling mechanism. Traditional 

industrial automation systems often produce data at a low 

semantic level—such as binary signals from sensors or 

numeric feedback from actuators—which inherently lack 

sufficient semantic clarity for meaningful interpretation. To 

address this limitation, the approach introduces a dedicated 

Data Observer software component. This Data Observer 

continuously monitors low-level signals from field 

components, including sensor states, actuator signals, and 

controller statuses, and translates these raw data signals into 

semantically rich textual event descriptions through 

predefined semantic annotations. 

These semantically enhanced events are generated 

dynamically during system operation and are stored within an 

event log memory. The event log provides a clear history of 

system activities, forming a basis for LLM-driven reasoning 

and control. LLM agents interact with this event log memory 

by subscribing to specific event notifications, which are 

generated in real-time by the digital twin middleware upon 

detecting changes in the automation system or the underlying 

technical process. 

The agent system in this implementation is specifically 

structured around three defined roles: Manager Agent, 

Operator Agent, and Summarization Agent. The Manager 

Agent listens to high-level user commands or event triggers, 

then generates task plans based on the incoming semantically 

enriched events. The Operator Agent subsequently executes 

these plans by translating high-level task directives into 

executable function calls on the field automation 

components. The Summarization Agent continuously 

observes the event log memory, providing concise 

operational summaries to users for improved transparency 

and interpretability. 

 
Figure 8 System Component Diagram of the Implementated System 

for Event-Driven Control of Industrial Automation System with LLM 

The concrete implementation was realized using 

established industrial communication protocols and 

frameworks such as OPC UA and ROS, as shown in Figure 

8. Additionally, the system facilitates structured dataset 

creation derived from operational event logs, which further 

supports the supervised fine-tuning of LLM models. This 

allows improvement of model accuracy, tailoring the LLMs 

precisely to downstream industrial control tasks. 

C. Reasoning on System State Snapshot of Simulated 

Process (Design Paradigm Type 1) 

This case study [9] introduces a specialized multi-agent 

LLM framework designed explicitly for the autonomous 

parametrization of digital twin simulation models. 

Parametrization of technical processes typically requires 

human knowledge and iterative experimentation. This use 

case directly addresses that challenge by deploying multiple 

specialized LLM agents to automatically explore the 

parameter space of digital twin simulations, identifying 

feasible and optimal parameter configurations for simulated 

technical processes. 

 
Figure 9 The System Overview of the Use Case: LLM experiments 

with Simulation Model to Determine Parameter Settings 

In this implementation (Figure 9), the technical process is 

modeled as a simulation composed of discrete execution 

steps, with each step associated with a corresponding system 

           
         

                  

              

            

                 

           

                
         

     
           

          
       

              
         

                      

          
               

                

                
           

                    

         
         

        
         

             
         

      

               

 



state representation. As the simulation progresses, these 

snapshots are generated incrementally, providing a structured 

context for agent-based reasoning. 

The cognition layer is implemented as an LLM-based 

system, consisting of four distinct agent roles that operate 

iteratively within a structured processing pipeline: 

• Observation and Reasoning Agents process raw data 

from the ongoing simulation, extract meaningful 

insights from state snapshots, and apply heuristic 

reasoning to interpret and analyze the observed states. 

• Decision Agent generates executable control actions in 

the form of function calls, dynamically setting the 

simulation parameters to guide the simulation toward 

desirable outcomes. 

• Summarization Agent consolidates agents output, 

executed control, and other system information, 

ultimately generating a concise, user-friendly summary 

report highlighting effective parameter configuration 

identified during the simulation run. 

This case study demonstrates the potential of LLM-based 

multi-agent systems to autonomously parametrize digital 

twin simulations. It highlights a promising research direction 

for integrating LLM intelligent reasoning into process 

simulation and control. 

VI. DISCUSSION 

This section discusses key actionable insights from the 

proposed architecture and use cases, including when LLMs 

are suitable for industrial automation, how integration depth 

affects system capabilities, and practical recommendations 

for system development. These insights help inform future 

development and investment decisions. 

A. Application goals: when to apply llm in intelligent 

automation? 

The application of LLM-based automation is particularly 

advantageous when the following characteristics are present: 

Knowledge-intensive Tasks: Tasks requiring semantic 

interpretation of textual data and perform reasoning based on 

existing human knowledge.   

Flexibility and On-demand: Tasks requiring 

adaptability, where rigid automation falls short. LLMs enable 

systems to respond flexibly to varying, unforeseen demands. 

Communicative Tasks: Tasks involving text processing, 

interaction with user, explanation, insights analysis, 

recommendation, and report content generation. 

B. The concept of “Return on Intelligence” 

To support the evaluation of LLM integration in 

automation systems, we introduce the concept of “Return on 

Intelligence”, analogous to “Return on Investment” and 

illustrated in Figure 10. It refers to the reduction in human 

effort, compared to conventional systems, resulting from the 

development of an intelligent automation solution.  

For instance, LLM-enhanced systems like intelligent 

robots, advanced automation, or service chatbots may 

initially demand higher human effort during the development 

phase (front-loading of efforts, marked with red in Figure 10). 

This increased effort can arise from the complexities involved 

in system design, knowledge representation modeling, and 

integration processes. However, this investment can be 

justified by reduced operational effort and greater flexibility 

during the system’s usage phase (marked with green in Figure 

10)., especially when users face cognitive challenges or 

knowledge barriers in accessing and operating automation 

systems. Furthermore, consolidating knowledge in digital 

twin and enabling its automated utilization through LLM 

agents can make the digital twin and LLM a strategic 

software asset. 

 
Figure 10 “Return on Intelligence” Concept Principal Illustration. 

(The trends of the curves do not represent exact quantitative values.) 

For systems handling straightforward, repetitive tasks that 

does not require much intelligence, the LLM might yield 

Negative “Return on Intelligence”, especially in the case that 

a conventional system based on simple rules and algorithmic 

logic can have lower development and operation costs and 

barely requires human intervention. 

The human effort and development cost can vary 

depending on the task use case. For example, building a 

simple question-answering chatbot may require less effort 

than developing a system that integrates digital twins or 

simulation-based task-solving capabilities. 

While this paper provides a design architecture and 

demonstration in a laboratory setup, realizing this “Return on 

Intelligence” and making LLM integration economically 

beneficial requires further collaboration between industry 

and academia for further investigation and to yield evaluation 

results on specific use cases. 

C. Integration Levels of LLM-based Automation Systems 

To discuss how the integration of digital twins and 

automation systems transforms LLMs from passive 

knowledge processors into intelligent agents capable of real-

world interaction and control, it is useful to examine the 

progressive levels of system integration. The table below 

compares three stages of LLM integration—standalone 

usage, combination with digital twins, and full integration 

with automation systems. Each stage enhances the system’s 

capabilities in data access, modeling, and interaction, 

reflecting a progressive path toward more autonomous and 

intelligent automated systems. 
Table 1 Integration Levels of LLM-powered Systems 

                                    

     
      

                      

 

               

                   

                              

                             

                       

 

                         

LLM LLM + Digital Twins LLM + Digital Twins + 

Automation System 

External Knowledge & Data Access 

Search engine, text 

file attachments, 

tools integration 

High-fidelity models that 

replicate reality 

Real-time data 

acquisition from the 

physical reality 

Modeling 

Textual data Systematic knowledge and 

representation modeling 

(serialized as textual data) 

Synchronized data for 

model update from 

physical processes 

 Integration of simulation 

models (serialized as textual 

data) 

Feedback to the LLM 

reasoning process and 

generated commands 

Interaction Capability 

Primarily text-

based interaction 

Interaction with other systems 

via digital twin software 

interfaces 

Perception and actuation 

to interact with physical 

world 



D. Test-driven development 

Drawing from our projects experience, we formed a task-

centric, test-driven methodology in building, integrating, and 

validating such systems in LLM projects: 

1) Define Tasks and Test Cases 

Begin by defining the typical tasks intended for 

automation. Design typical test cases based on these tasks to 

evaluate whether the chosen LLM has the baseline 

knowledge and capabilities to perform them successfully. 

Automated benchmarking can be first realized using these 

test cases, and the quality of LLM responses can be further 

automatically evaluated through LLM-as-a-judge methods 

[22]. 

2) Tackle Complexity with Task Decomposition and LLM 

Agent Design 

If a task is too complex for a single LLM, create a 

structured LLM multi-agent system. Break down the task into 

smaller, manageable sub-tasks within a task processing 

pipeline. Assign specialized LLM agents to sub-tasks that 

match the characteristics described in Section VI.A.. 

3) Integrate Domain-Specific Knowledge and Tools 

If the task requires knowledge and capability beyond the 

LLM’s built-in capabilities, apply supporting methods such 

as tool usage [16], [17], [18], RAG variants [14], [15]. Some 

other options are also listed in IV.B.3)., where 

“hallucination” problem is discussed. 

4) Iterative Testing and Refinement 

Use iterative testing throughout development to assess 

system performance, uncover issues, and refine the 

information processing pipeline. Concentrate the LLM 

agent’s reasoning function on sub-tasks where it is most 

effective, based on task characteristics (as outlined in VI.A) 

and observed benchmark outcomes. 

VII. CONCLUSION 

This paper presents a three-layer architecture that 

integrates LLMs, digital twins, and automation systems to 

enable intelligent task automation in industrial environments. 

Digital twins serve as the critical bridge between the physical 

system and cognitive reasoning, allowing LLMs to perceive 

and influence real-world processes. We propose three design 

paradigms—state snapshots, event logs, and planning 

sequences—to structure system information for LLM-driven 

control. To manage task complexity and improve reliability, 

we employ multi-agent design and task decomposition 

strategies. Realistic use cases demonstrate the practical 

implementation and benefits of the proposed approach. We 

introduce the concept of “Return on Intelligence” to assess 

the value of integrating LLMs into automation systems. 

Moving forward, future efforts could focus on connecting 

academic research insights with industrial needs, 

transforming the proposed architecture into more innovative 

and value-adding applications. 
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