

University of Stuttgart Institute of Industrial Automation and Software Engineering

> Development of a Simulation Platform in Digital Twin for Intelligent Manufacturing

Presenter: Xuan Yang Supervisor: Yuchen Xia Examiner: Prof. Dr. Ing. Michael Weyrich

Introduction	Quick walk-through	Basics	Method Part 1	Method Part 2	Evaluation	Application	Conclusion

Introduction Digital Twins

- > **Definition:** representing a physical entity that mirrors real-world conditions, processes, and systems^[1].
- This thesis: 3D Modeling + 3D Simulation in Digital Twin
- Management of physical assets: monitoring, planning, analysis, prediction...

Requirements:

- ➢ High-Fidelity
- Low-Cost

Agenda 1 2 3D Modeling and Simulation

- Quick walk-through
- Basics
- Methods
- Evaluation
- Application
- Conclusion

Quick walk-through

Preview

Agenda 1 2 3D Modeling and Simulation

- Quick walk-through
- Basics
- Methods
- Evaluation
- Application
- Conclusion

Basics

- 1. 3D Modeling Methods
- 2. Simulation Environment Integration

Methods

- 1. 3D Modeling:
 - create 3D model from images
- 2. Simulation Environment Integration
 - used for predictive Execution

Methods

- 3D Modeling:
 create 3D model from images
- 2. Simulation Environment Integration
 - used for predictive Execution

Introduction	Quick walk-through	Basics	Method Part 1	Method Part 2	Evaluation	Application	Conclusion
Applie Photo	ed Method grammetry						
Image Mate	hing	ure Extraction	K baddi Specheminika i i Da Mil See han bag B dada B b d d b n k i i i i i i i i i i i i i i i i i i	*45		M	
Structure from	Motion	Matching					
Meshing	g Depth map	os estimation					
	Tex	turing	at two works			V	

Photogrammetry

applied for our use case

Photogrammetry

applied for our use case

Introduction

Photogrammetry

applied for our use case

White Model

Raw 3D Model

Post-Processing

Manual Correction

Different Transparency and Reflections

Methods

- 1. 3D Modeling: - create 3D model from images
- 2. Simulation Environment Integration
 - used for predictive Execution

University of Stuttgart, IAS

Dynamic Integration

Define Dynamic Behavior of the 3D-Component

Some of the NVIDIA Jargon Physical Simulation → Physics Laws								
 "Prims": used for define Entity > Workpiece Material > Conveyor Belt 	 "Transform", "Physics": used for define Attributes ➢ Position, rotation, scale ➢ Mass, friction 							
 *Ominigraph": used for define Behavior > Start, Stop > Velocity Control 	 "Relation": used for define Interaction ➢ Collision Detection ➢ Connection 							

Operation Validation

Material Flow + Production Processing

Predictive Execution Operation Calling

Command:

Send an empty pallet from the initial station to the final station.

Python:

transport(empty_p,C1,C8)

Start \rightarrow End

Advantage of Isaac PhysX Physics Engine

24

Evaluation

Quality of the 3D Model

3D Model Quality Optimization

Limitation: Uneven Surface

3D Model Quality Optimization

Limitation: Uneven Surface

Comparison

Question

Application

Evaluation Criteria of 3D Models Optimization

How to quantify the quality of 3D model?

Tech	nical Criteria: E	irrors	Low- Resolution	High- Resolution	Manual Optimization
Roughness	C A B E D	Conveyor Belt	2.378mm	1.202mm	(0)
Roughness		Model Surface	2.498mm	1.089mm	(0)
	Straightness		0.505mm	0.850mm	(0)
	Parallelism	//	0.237°	0.213°	(0)
	Levelness	$\overline{\nabla}$	0.895°	0.825°	(0)
	Cost		3h	3h	10-15h

Evaluation Criteria of 3D Models Optimization Comparison

Technical Crit	eria: Errors	Low- Resolution	High- Resolution	Manual Optimization
Roughness 💀	Conveyor Belt	2.378mm	1.202mm	(0)
	Model Surface	2.498mm	1.089mm	(0)
Straightness —		0.505mm	0.850mm	(0)
Paralle	lism //	0.237°	0.213°	(0)
Leveln	ess 🖂	0.895°	0.825°	(0)
Cos	t	3h	3h	10-15h

Application

Anomaly Detection by Comparison with Camera Data (used by another work)

Video Comparison

Anomaly Detection

Applied in Anomaly Detection and Analysis Using Simulated and Real-Time Video Data with Vision Language Model (MT-3834)

Anomaly Situations:

- Material Mismatch
- Human Interference
- Conveyor Failure

Video Comparison

Anomaly Detection

Applied in Anomaly Detection and Analysis Using Simulated and Real-Time Video Data with Vision Language Model (MT-3834)

Anomaly Situations:

- Material Mismatch •
- Human Interference

Video Comparison

Anomaly Detection

Applied in Anomaly Detection and Analysis Using Simulated and Real-Time Video Data with Vision Language Model (MT-3834)

Anomaly Situations:

- Material Mismatch
- Human Interference
- Conveyor Failure

Summary and Outlook

Conclusion

- **Pipeline:** Physical Facility \rightarrow Digital Twin
- high-fidelity 3D models \rightarrow highly reliable Simulation & Production Planning

Python:

trans

To predict command execution

Future Research

- Scalability: more complex tasks
- Enable anomaly detection based on Simulation Model
- LLM Integration

au	on a riouucion rianning							
anc	rt(empty p C1 C8)							
200								
	LLM multi-agent system							
	Data interface Control interface							
	Digital twin system							
el	Information model descriptive							
	Synchronized interface							
	Physical entity or process							

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Xuan Yang

e-mail st181292@stud.uni-stuttgart.de phone +49 (0) 711 685-000 fax +49 (0) 711 685-000

University of Stuttgart Institute of Automation and software systems Pfaffenwaldring 47, 70550 Stuttgart

Conclusion

References

- [1] Y. Xia, D. Dittler, N. Jazdi, et al., "LLM experiments with simulation: Large language model multi-agent system for process simulation parametrization in digital twins," arXiv e-prints, 2024, arXiv:2405.18092.
- [2] Taiwan Al Labs & Foundation (Taiwan Al Labs), Expanding Computer Vision Multi-View Stereo Capabilities: Automatic Generation of 3-dimensional Models via 360 Camera Footage, Available: https://ailabs.tw/smartcity/expanding-computer-vision-multi-view-stereo-capabilities-automatic-generation-of-3-dimensionalmodels-via-360-camera-footage/, Accessed on: Apr. 3rd, 2025.
- [3] D. Xu, Y. Jiang, P. Wang, Z. Fan, H. Shi, and Z. Wang, "SinNeRF: Training neural radiance fields on complex scenes from a single image," in *Proceedings of the European Conference on Computer Vision* (ECCV), 2022, pp. 685-701. doi: 10.1007/978-3-031-20047-2_42.
- [4] SIDILAB, FACTORY I/O 2.0 3D Factory Simulation, Available: https://www.youtube.com/watch?v=__VO_dEi3Zo/, Accessed on: Apr. 5th, 2025.
- [5] X. B. Meng, A. C. Jiang, B. Gao, *et al.*, "Development of virtual TBM construction simulation teaching system based on Unity3D," in *Expanding Underground—Knowledge and Passion to Make a Positive Impact on the World*, CRC Press, 2023, pp. 2782–2789.
- [6] NVIDIA, *BMW Group Starts Global Rollout of NVIDIA Omniverse*, Available: <u>https://blogs.nvidia.com/blog/bmw-group-nvidia-omniverse/</u>, Accessed on: Apr. 5th, 2025.

Introduction	Quick walk-through	Basics	Method Part 1	Method Part 2	Evaluation	Application	Conclusion

BACKUP SLIDES AFTER THIS

	Introduction	Quick walk-through	Basics	Method Part 1	Method Part 2	Evaluation	Application	Conclusion
--	--------------	--------------------	--------	---------------	---------------	------------	-------------	------------

3D Model Quality Optimization

2. Uneven Surface

