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Motivation
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1. High Computational Costs: LLMs require significant computational power for training and 

inference, making them challenging to deploy in resource-constrained environments.

2. Extensive Resource Requirements: Beyond computation, LLMs demand considerable 

memory and storage, which are scarce on devices with limited processing capabilities.

3. High Energy Consumption: The energy demands of operating LLMs at full scale are 

substantial



LLMs and power – Bigger not necessarily better

x
=

Billions of bits of data being 
calculated – moved between 
memory and processing

More parameters => more data => more bits moved => more energy consumed

Weights, biases and intermediate 

values moved between memory 

and processing

Millions of neurons with billions of 

connections
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1. Accessibility and Deployment: Quantization 

allows LLMs to be more accessible by enabling 

their deployment on a wider range of devices, 

including those with limited hardware 

specifications.

2.  Energy Efficiency: Reduced resource 

requirements through quantization lead to lower 

energy consumption, making LLMs more 

sustainable and cost-effective for widespread 

use.

3. Real-time Applications: Quantizing LLMs 

facilitates real-time processing capabilities on 

edge devices, crucial for applications requiring 

immediate responses.

Quantized LLMs for  Accessibility and Real-time Processing
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Initial ideas
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Basis

Quantization is an optimization technique that reduces the precision of the numbers used to 

represent a model's parameters, which are by default 32-bit floating point numbers. The 

benefits of this optimization are a smaller model size, better portability, and faster 

computation.

Quantization
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Basis
Quantization

Post-Training 

Quantization 

(PTQ): 

Quantization-Aware 

Training (QAT): 

This method involves converting the 

weights of a fully trained model to a 

lower precision format. 

QAT integrates the quantization process into 

the training phase, either during pre-training or 

fine-tuning
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Basis

Post-Training 

Quantization 

(PTQ): 

This method involves converting the 

weights of a fully trained model to a 

lower precision format. 

Pros Cons

simple to implement drawback potential for performance 

degradation due to the reduced 

precision

not require retraining of the model
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Basis

scale

Asymmetric

Quantization
Symmetric 

Quantization

based on the actual minimum 

(r_min) and maximum

(r_max) range of the floating-point 

numbers

←Scale (S) → absolute maximum value 

(|r_max|), creating a symmetric 

range around zero.

quantized value corresponding to 

the real value 0. It is determined 

from the data range and is not 

necessarily at q_min

←Zero Point (Z)→ Always at zero in the quantized 

range, meaning the floating-point 

zero maps directly to the 

quantized zero.
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Basis

Post-Training 

Quantization 

(PTQ): 
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Post-Training 

Quantization (PTQ)
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Basis

Adaptive

8-bit 
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Basis
8-bit Quantization 

with LLM.int8()

Optimizing with Precision: 

Handling Outliers in Quantization

Outlier features 

• Exceptional features retain their detail 

through 16-bit floating-point precision 

(FP16).

• Transition to 8-bit integer (INT8) format 

streamlines memory usage while upholding 

essential precision.
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Basis
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Basis

Adaptive Activation Rounding 

for Post-Training Quantization 

• Simplifies with standard rounding-to-nearest value during post-training quantization.

• Aims to minimize the Frobenius norm, assessing matrix dimensions and calculating error precision.

• Adaptive rounding has been empirically proven to significantly boost model performance and

   efficiency, particularly in resource-constrained environments such as edge computing and

   mobil platforms.
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Implementation

• To quantize pre-trained models there are different libraries and GitHub repositories that 

explain how to quantize a model in a specific way.

• Also, there are many quantized models available online which can be used.
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Implementation (Dataset)

• Objective: To assess the effectiveness of quantized language models in industrial automation 

applications. 

• Dataset Foundation: Utilized a curated set of 875 single-choice questions, extracted from a 

broader dataset aimed at "MEASURING MASSIVE MULTITASK LANGUAGE 

UNDERSTANDING.“

• Selection Criteria: Questions were carefully chosen to specifically evaluate the models' 

comprehension and problem-solving abilities within the industrial automation domain.

• Purpose: This specialized dataset provides a critical benchmarking tool for measuring the nuanced 

understanding and reasoning capabilities of quantized models in a targeted industrial context.
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Implementation

Send a single-
choice question

LLM modles

Save the response

In CSV
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int8 int4
llama-2-
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Llama-2-7b-chat and Its Quantized Models (q2k, q3kl, q5kl, q8)
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LLM.int8() vs  q8
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• Ensured fair comparison with consistent parameters such as temperature and prompts.

• Hypothesized q8's potential for higher performance due to alignment with float16 and

   computational strategy.

• q8 outperforms int8 in accuracy, resulting in fewer invalid responses, confirming 

• improved model understanding.
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Summary and Outlook

• Confirmed quantized LLMs' viability in industrial automation, interpreting complex data 

accurately.

• q8 quantization method notably outperformed int8, underscoring the importance of strategic 

quantization selection.

• Investigated quantization on LLMs, emphasizing semantic interpretation for industrial automation.

• Utilized Llama-2-7b-chat model to evaluate efficiency in technical reasoning within industrial 

contexts.

• Benchmarked against 857 questions from industrial automation papers, measuring accuracy against 

model size reduction.

• Established that quantization effectively balances model size with performance, maintaining 

substantial accuracy.
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