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Motivation

Rounded Model Size in Millions of Parameters
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High Computational Costs: LLMs require significant computational power for training and
inference, making them challenging to deploy in resource-constrained environments.

Extensive Resource Requirements: Beyond computation, LLMs demand considerable
memory and storage, which are scarce on devices with limited processing capabilities.

High Energy Consumption: The energy demands of operating LLMs at full scale are
substantial
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LLMs and power — Bigger not necessarily better

Billions of bits of data being

: :m """"""""""""" = calculated — moved between
® memory and processing
Weights, biases and intermediate Millions of neurons with billions of
values moved between memory connections

and processing

More parameters => more data => more bits moved => more energy consumed
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Quantized LLMs for Accessibility and Real-time Processing

1. Accessibility and Deployment: Quantization
allows LLMs to be more accessible by enabling
their deployment on a wider range of devices,
including those with limited hardware
specifications.

2. Energy Efficiency: Reduced resource
requirements through quantization lead to lower
energy consumption, making LLMs more
sustainable and cost-effective for widespread
use.

3. Real-time Applications: Quantizing LLMs
facilitates real-time processing capabilities on
edge devices, crucial for applications requiring
immediate responses.
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Initial ideas
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Basis

Quantization

Quantization is an optimization technique that reduces the precision of the numbers used to
represent a model's parameters, which are by default 32-bit floating point numbers. The
benefits of this optimization are a smaller model size, better portability, and faster
computation.
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Basis Quantization

Post-Training Quantization-Aware

Training (QAT):

Quantization

(PTQ):
This method involves converting the QAT integrates the quantization process into
weights of a fully trained model to a the training phase, either during pre-training or
lower precision format. fine-tuning
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Basis

Post-Training This method involves converting the
Quantization weights of a fully trained model to a
(PTQ): lower precision format.

simple to implement drawback potential for performance
degradation due to the reduced
precision

not require retraining of the model

Adaptive

Quantization Adaptive
with Activation
LLM.int8() Rounding
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Basis

Asymmetric
Quantization

S XS

. Floating-point
4 » Scale
Gmin Z Tmax
Zero point

based on the actual minimum
(r_min) and maximum

(r_max) range of the floating-point
numbers

quantized value corresponding to
the real value 0. It is determined
from the data range and is not
necessarilg at g_min
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Symmetric
Quantization

" Floating-point
o~ - Scale
7

qmin Z —] 0 qmux

Zero point
absolute maxi

mum value
(Ir_max]|), creating a symmetric
range around zero.

Always at zero in the quantized
range, meaning the roating-poin§1
zero maps directly to the
quantized zero. 4/12/2023



Basis

Post-Training

Quantization
(PTQ):

4 Adaptive

Quantization Adaptive

with Activation
LLM.int8() Rounding
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Post-Training
Quantization (PTQ)

Adaptive

Adaptive Activation

Asymmetric Symmetric
Quantization

8-bit Quantization

with LLM.int8() Rounding

Quantization
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Adaptive

Quantization Adaptive

with
LLM.int8()

Activation

Rounding
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Basis

LLM.int8() &oemam ...

Optimizing with Precision:
Handling Outliers in Quantization

Outlier features N
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» Exceptional features retain their detail
through 16-bit floating-point precision
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Basis

Adaptive Activation Rounding

for Post-Training Quantization

rounding-to-nearest
0305|0702 > 0 1 1 0
AdaRound
0305|0702 > 0| 0 1 0
(one potential result)

« Simplifies with standard rounding-to-nearest value during post-training quantization.
« Aims to minimize the Frobenius norm, assessing matrix dimensions and calculating error precision.

» Adaptive rounding has been empirically proven to significantly boost model performance and
efficiency, particularly in resource-constrained environments such as edge computing and

mobil platforms.
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Implementation d INTS

FP 32

487MB i
\/" 168MB

* To quantize pre-trained models there are different libraries and GitHub repositories that
explain how to quantize a model in a specific way.

* Also, there are many quantized models available online which can be used.

(el
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from transformers import AutoModelForCausallM, AutoTokenizer
from google.colab import drive
import torch

# Mount Google Drive
device = torch.device({'cuda' if torch.cuda.is_awvailable() else "cpu®)
# Specify your Google Driwve path
model_intd = AutoModelForCausallM.from_pretrained({model_id,
device map='auto’,
load in_8bit=True,
)
print{f"Model size: {model_int8.get memory footprint()}:,} bytes")

The “load in_#4bit™ and "~load_in_8bit~ arguments are deprecated and will be removed in the future wversions. Please, pass a ~BitsandByt

Loading checkpoint shards: 1003 [ NN -2 (00°04<00°00, 2 13sii]

Model size: 7,135,851,776 bytes
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Implementation (Dataset)

question, A, B,C,0, correct ansher
The wheels and gears of a maching are greased in onder to decrease, efficiency,output, friction, D, https: //github. com/hendrycks /test,arc easy.csv,

XA clean air act must be followed by 3, hand drive manufacturer, conputer programning course, B, https:/ /el hbcom/hendryck [test,obgg.csv,
Xhhat 1s essential for a robot to possess to walk up a fLight of stairs?, skittles, ethics, Lava, A, https:/ /github. con/he dyk [test, obga.cs

XAs venicles becone nore efficient petro consumption, stops, stay the sane,C,ttps:/ github. con/hendrycks test, obga.csv, ‘

« Objective: To assess the effectiveness of quantized language models in industrial automation
applications.

« Dataset Foundation: Utilized a curated set of 875 single-choice questions, extracted from a
broader dataset aimed at "MEASURING MASSIVE MULTITASK LANGUAGE
UNDERSTANDING.®

« Selection Criteria: Questions were carefully chosen to specifically evaluate the models'
comprehension and problem-solving abilities within the industrial automation domain.

« Purpose: This specialized dataset provides a critical benchmarking tool for measuring the nuanced
understanding and reasoning capabilities of quantized models in a targeted industrial context.
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Implementation

question,A,B,C,D,correct answer
The wheels and gears of a machine are greased in order to decrease, efficiency, friction,D,https://github.com/hendrycks/test,arc_easy.csv,
xA clean air act must be followed by a, hard drive manufacturer, computer programming course,B,https://github.com/hendrycks/test,obga.csv,

xWhat is essential for a robot to possess to walk up a flight of stairs?, skittles, lava, A, https://github.com/hendrycks/test,obqa. csv,
xAs vehicles become more efficient petro consumption, stops, stay the same,C,https://github.com/hendrycks/test,obqa. csv, |

Send a single-
choice question

LLM modles

Save the response
In CSV

B llama 2 7b-chat.ggmlv8 0.bin.csv

1

Saved answers compare the rsulte count the answers

1
o — ojof.
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llama-2-
7b-chat

Percentage of all questions
- N w B n (@] ~
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gpt-4 gpt-3.5 llama-2-7b-chat

®@Correct Answers  BWrong Answers  BInvalid Answers
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Percentage of all questions
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[lama-2-
7b-chat

llama-2-7b-chat

® Correct Answers

int8

®\Wrong Answers

® Invalid Answers

int4
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Llama-2-7b-chat and Its Quantized Models (g2k, q3kl, gokl, g8)
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LLM.int8() vs q8

70
60
50

40

Percentage of all questions

int8 q8

®Correct Answers  ®BWrong Answers B Invalid Answers

Ensured fair comparison with consistent parameters such as temperature and prompts.
Hypothesized g8's potential for higher performance due to alignment with float16 and

computational strategy.
g8 outperforms int8 in accuracy, resulting in fewer invalid responses, confirming
improved model understanding.
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Summary and Outlook

Investigated quantization on LLMs, emphasizing semantic interpretation for industrial automation.

Utilized Llama-2-7b-chat model to evaluate efficiency in technical reasoning within industrial
contexts.

Benchmarked against 857 questions from industrial automation papers, measuring accuracy against
model size reduction.

Established that quantization effectively balances model size with performance, maintaining
substantial accuracy.

Confirmed quantized LLMSs' viability in industrial automation, interpreting complex data
accurately.

g8 quantization method notably outperformed int8, underscoring the importance of strategic
quantization selection.
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