

University of Stuttgart Institute of Industrial Automation and Software Engineering

Semantics-based classification of standardized data properties for measurement data
 Research Project Presentation
 Yang Jiang

Study Program: Electromobility

Evaluation of performance of

1)foundation models for

Motivation

Sensor Technologies in the Era of Smart Factory and Industry 4.0 [1]

- sensors and the measurement data they generate play an important role in smart factories
- sensor information should be understood smoothly between different scenarios or factories
- determination and classification of these equivalent data features

Outline

Fundamentals

Conception of Classification System

Implementation of Classification System

Evaluation

Conclusion and Future Work

University of Stuttgart, IAS

Fundamentals

ECLASS

ECLASS-Conceptual-Data Model [2]

E Property

Example of the ECLASS Property

Fundamentals

Measurement data taxonomy

Classification of Sensors [3]

1 Messung nichtelektrischer Größen
1.1 Grundlegende Messgeräte
1.1.1 Zeitmessung
1.1.2 Längenmessung
1.1.3 Zählen
1.2 Weitere Messgeräte elementarer Größen
1.2.1 Flächeninhaltsmessung
1.2.2 Volumenmessung
1.2.3 Ortsbestimmung, Winkel- und Richtungsmessung
1.2.4 Masse, Gewichtskraft, Dichte usw.
1.2.5 Temperatur
2 Messung elektromagnetischer Größen
2.1 Elektrische Größen
2.2 Magnetfeld
2.3 Radioaktivität und Strahlung
3 Abgeleitete Messgeräte
3.1 Geschwindigkeit
3.1.1 Drehzahl
3.1.2 Beschleunigung
3.1.3 Zurückgelegter Weg
3.1.4 Leistung
3.2 Messungen an Flüssigkeiten und Gasen
3.3 Messungen an Feststoffen
3.4 Meteorologische Instrumente
3.5 Messung der lichttechnischen Größen und Farbeigenschaften
3.6 Schall- und Schallpegelmessung
3.7 Kombinierte Geräte
3.8 Universelle Messgeräte für verschiedene elektrische Größen
3.8.1 Qualität der Messungen

Classification of measuring instruments [4]

Foundamentals

Text Classification and transfer learning

Steps in transfer learning [6]

Foundamentals

Foundation Models

Model Name (Release Time)	Model Architecture (#params)	Pre-training Tasks	Pre-training Data		Applications	
BERT(10.2018)	En (0.1, 0.3)	MLM(token) +Next Sentence Prediction	BookCorpus + English Wikiped (800M+2500M words)	BookCorpus + English Wikipedia (800M+2500M words)		
RoBERTa(07.2019)	En (0.1, 0.3)	MLM(token)	BookCorpus + CC-News + OPENWEBTEXT + STORIE (160GB)	s	or token classification	
DeBERTa(06.2020)	En (0.1, 0.4, 0.7, 0.9, 1.5)	MLM(token) + Disentangled Attention	Wikipedia + BookCorpus + OPENWEBTEXT + STORIES	(78GB)		
ELECTRA(03.2020)	En (0.1, 0.3)	MLM(token) + Replace Token Detection	Wikipedia + BookCorpus + Gi ChueWeb + Common Crawl (32 words)	ga5 + 2.89B		
ELMo(02.2018)	De (0.1)	LTR + RTL	1 Billion Word Benchmark		Text generation	
GPT-3(05.2020)	De (175)	LTR	Common Crawl + WebText2 + Book1 + Book2 + Wikipedia (75TB)			
CPM-1(12.2020)	De (2.6)	LTR.	Chinese corpus (100GB)			
XLNET(06.2019)	De (0.1, 0.3)	LTR	Wikipedia + BookCorpus + Gi ChueWeb + Common Crawl (32 words)			
Palm(04.2022)	De(540)	LTR	filtered webpages + 2 books +Wikipedia +news articles + source code+ social media conversations(780B tokens)			
BART(10.2019)	En-De (0.1, 0.4)	MLM(span)	BookCorpus + CC-News + OPENWEBTEXT + STORIES (160GB)	Transi summ	lation, arization and	
T5(10.2019)	En-De (0.1, 0.2, 0.7, 3, 11)	MLM(span)	C4 Dataset(750 GB) questi		on answering	
Switch transformers (01.2021)	En-De (385, 1600)	MLM(span)	C4 Dataset(750 GB)			

- trained on significant quantities of data
- adapted to a wide range of downstream tasks.

Conception of Classification System

Word embedding and Semantic Similarity

Conception of Classification System

Conception System Diagram

Implementation of Classification System

Determination of Dataset

Implementation of Classification System

Determination of Ctategories, Keywords, Foundation Models

Mechanical: 53 Electrical: 30 Thermal: 33 Magnetic: 8 Acoustic: 20

Final Categories and Keywords

Code to use different foundation models

Implementation of Classification System

Concrete Example

Measurement data (Name: Definition)	Dim 1	Dim 2	 Dim 768											
Rotation speed:	0.016	0.038	 0.023											
Battery potential:	0.022	0.026	 0.058		ine similarity									
			 		ino Similarity			Ν	lormalizati	on				Classification in the
Temperature range:	0.017	0.090	 0.052			Mechanical	Electrical	Thermal			Mechanical	Electrical	Thermal	
					Rotation speed:	0.5	0.1	0.1		 Rotation speed: 	0.71	0.14	0.14	nerspective of
	• 200)×768			Battery potential:	0.0	0.9	0.2		Battery potential:	0.0	0.82	0.18	
				/	/									vectors and
				. /	Temperature range:	0.3	0.5	0.7		Temperature range:	0.20	0.33	0.47	
Keywords/Labels	Dim 1	Dim 2	 Dim 768			0.70					0.700		Ŭ	matrixes
Mechanical	0.039	0.020	 0.057	/		• 3×768	В				• 3×768			maantoo
Electrical	0.027	0.002	 0.016	Í.										

3×768

0.026

0.006 ...

0.036

Thermal

Evaluation Metrics

- Accuracy
- Precision
- Recall
- F1 score
- Confusion Matrix

Code to generate classification report

Code to plot confusion matrix

Evaluation Results of BERT

Detail:				
	precision	recall	f1-score	support
acoustic	1.00	1.00	1.00	20
electrical	0.97	1.00	0.98	30
magnetic	0.89	1.00	0.94	8
mechanical	1.00	0.96	0.98	53
thermal	1.00	1.00	1.00	33
accuracy			0.99	144
macro avg	0.97	0.99	0.98	144
weighted avg	0.99	0.99	0.99	144

Accuracy, precision, recall, and the F1 score of BERT

Confusion Matrix of BERT

Evaluation Results of RoBERTa

Detail:				
	precision	recall	f1-score	support
acoustic	1.00	0.75	0.86	20
electrical	0.94	0.97	0.95	30
magnetic	1.00	0.88	0.93	8
mechanical	0.88	0.98	0.93	53
thermal	0.97	0.94	0.95	33
accuracy			0.93	144
macro avg	0.96	0.90	0.92	144
weighted avg	0.94	0.93	0.93	144

Accuracy, precision, recall, and the F1 score of RoBERTa

Confusion Matrix of RoBERTa

Evaluation Results of T5

Detail:				
	precision	recall	f1-score	support
acoustic	1.00	0.85	0.92	20
electrical	0.91	0.97	0.94	30
magnetic	0.80	1.00	0.89	8
mechanical	0.98	0.89	0.93	53
thermal	0.86	0.97	0.91	33
accuracy			0.92	144
macro avg	0.91	0.93	0.92	144
weighted avg	0.93	0.92	0.92	144

Accuracy, precision, recall, and the F1 score of T5

Confusion Matrix of T5

Results Comparision

	Accuracy	Precision	Recall	F1-score
BERT	0.99	0.97	0.99	0.98
RoBERTa	0.93	0.96	0.90	0.92
T5	0.92	0.91	0.93	0.92

	Run Time
BERT	17.9 s
RoBERTa	18.3 s
T5	19.4 s

BERT model performs better than the other two models in this classification task

Evaluation results in different conditions

<pre>dic_clusters = {} dic_clusters["time"] = ['time, date, timestamp'] dic_clusters["listert"] _ ['listert']</pre>		Accuracy	Precision	Recall	F1-score
dic_clusters["length"] = ['length, width'] dic_clusters["area"] = ['area, volume']	BERT	0.89	0.91	0.89	0.89
<pre>dic_clusters["mass"] = ['mass, gravity, density'] dic_clusters["temperature"] = ['temperature, heat']</pre>	 RoBERTa	0.90	0.91	0.90	0.90
<pre>dic_clusters["electrical"] = ['voltage, current, power'] dic_clusters["speed"] = ['speed, rotation, acceleration']</pre>	Τ5	0.85	0.87	0.85	0.85

T5 has strong robustness

dic_clusters["mechanical"] = ['mechanical, position, speed, force, pressure, mass, torque
<pre>dic_clusters["electrical"] = ['electrical, current, potential, voltage']</pre>
<pre>dic_clusters["thermal"] = ['thermal, temperature, heat']</pre>
<pre>dic_clusters["magnetic"] = ['magnetic, magnetic field, magnetic flux, permeability']</pre>
<pre>dic_clusters["acoustic"] = ['acoustic, wave amplitude, wave velocity, phase']</pre>

	Accuracy	Precision	Recall	F1-score
BERT	0.82	0.81	0.81	0.79
RoBERTa	0.76	0.73	0.75	0.72
Т5	0.88	0.86	0.90	0.88

Factors affecting classification results:

- 1. Foundation models
- 2. Determination of dataset
- 3. Determination of categories
- 4. Determination of keywords

Conclusion and Future Work

- Conclusion:
- Designed a classification system to classify the measurement data in ECLASS
- Selected datasets, categories and keywords to accomplish classification task
- Evaluated the performance of three foundation models: BERT, RoBERTa and T5
- Future work:
- fine-tuning the foundation models
- Increase the number of words in the dataset

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Yang Jiang

e-mail st170646@stud.uni-stuttgart.de phone +49 (0) 711 685fax +49 (0) 711 685-

University of Stuttgart

References

[1] T. Kalsoom, N. Ramzan, S. Ahmed, and M. Ur-Rehman, "Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0," Sensors, vol. 20, no. 23, p. 6783, Nov. 2020.
[2] ECLASS, "Conceptual data model," ECLASS.

[3] A. A. Ensafi, "An introduction to sensors and biosensors," Electrochemical Biosensors, pp. 1–10, 2019. [4] Autoren der Wikimedia-Projekte, "Gerät zur Bestimmung physikalischer Größen,"

Wikipedia.org, Dec. 11, 2002.

[5] Li Q, Peng H, Li J, et al. "A survey on text classification: From shallow to deep learning."

arXiv preprint arXiv:2008.00364, 2020.

[6] Modern Approaches in Natural Language Processing. https://slds-lmu.github.io/seminar_nlp_ss20/