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Motivation

CP Factory

University of Stuttgart, IAS

g

Technical expert required in the field of
automation for any query related to the
system

Complete information on how the
system is programmed is not available

Additional software required for
interaction with the user e.g. SCADA,
CMMS or an HMI

The entire system is not so friendly for
new users
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Thesis Problem Statement

How can we use NLP models for the maintenance and
diagnosis of an automation system?

Inputs

{1} Typical SCADA/HMI system {2} Standard Transformer model

Why NLP ?
* Understanding of different types of code and the context of an automation system

«  Adaptability and Scalability of Large Language Models
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Methods used for diagnosis and maintenance in an Automation

Background
system
Application software
and database
Data store
Maintsnance
managament system
providing decision
Elevator or support
Machine tool to
be monitored

CMMS

On-board
intalligant
alarm system
SPU
= Service

Sensors | enginear with

portable device

{3} CMMS system
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HOW

SCADA

WORKS?

Decisions Are Made

Data From Assets

Are Transmitted To | VQ ) 49 Exami o E?;:tg:g
Via Sensars S " e
Es i
0
PLC Converts Data Into Users Access Data
Useful Information For Through A Human-Machine
The Software Interface On The Software

{4} SCADA system
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Background
Evolution of Large Language Models

2018 (left) through 2019 (right) 2020 onwards ~ 175B
GPT-3 model consists of
* 175B parameters
- 96 attention layers
o 18, o 17B g4B « 3.2M batch size
94M 110M 340M 465M 665M 330M 1-5B 340m 355m 1.5B 1.5B "B v mm
] 4~ @ & o = VoS NS > g < A <Y b’
§ S T E VS ETEEFTITETSTEFTE &
& & § T & g £ 5 T &L
Qg(/ < @‘b 6.0 N

{5} Evolution of LLM’s
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Conception pa——
Phase1: Feature Extraction

- Chunks
Export (.pdf,i Pre

| .xml, .scl) processing LLM

GPT-3, GPT-4 txt
Siemens PLC

Prompts: Large language models (LLMs) have made it possible for everyone to interact with them,
using prompts in natural language.

def generate explanation{code snippet):
prompt = "read the SCL file exported from the Siemens TIA Portal and explain it:\n"“pythen\n" + code snippet + "\n" """
response = openal.Completion.creats(
engine="text-davinci-@e3",
prompt=prompt,
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Conception
Phase2: Semantic Search

» Text Splitter

lChunks Vector DB

Generates | Embeddings

embedding

OpenAl / Sentence Transformers
Pine‘cone

Query &
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Context

'

Semantic
Search

{

Query result

GPT-3, GPT-4

GPT-3, GPT-4
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Dataset

Siemens TIA portal Dataset

Siemens TIA Portal
(V16)

<Parts>
<RAccess Scope="GlobalVariable" UId="21":>
<Symbol>
<Component Name="xEA Test active" i=
</Symbol>
</hcoess>
<hocess Scope="GlobalVariable" UILd="22">
<Symbol>
<Component Name="dbVar" />
<Component Name="ShuntPar" />
<Component Name="xRobotinoUsed" />
</Symbol>
</hcoess>
<RAccess Scope="LiteralConstant" UId="23":>
<Constant>
<ConstantType>Bool</ConstantTypes
<ConstantValue>trune</ConstantValue>
</Constant>
</Rccess>
<Part Name="Contact" UId="24" />
<Part MName="Contact" UId="25" />
<Part Name="ReturnWValne" UId="26" />
</Parts>

Exported in XML format

University of Stuttgart, IAS

#xInitEn := #xInit CR #iMode <> 1;
IF #xInitEn OR NOT #xInitDone THEN

$iZero := 0;
IF #RcvOrder.diONo <> O AND #RcvOrder.iOPos <> 0 THEN
"OpReset™ (diCNo := #RcvOrder.diCNo,
i0Pos := #Rcv0rder.iOPos,
pRcovHeader := #RcvHeader);
IF ENC THEN
#iRetVal := FILL(BVAL := #iZero, BLK => #RcvOrder);
#iRetVal := FILL(BVAL := #iZero, BLK => #RcvHeader):
END IF;
END_IF;

"dbVar",Hmi.ISTB.xErrMes := FALSE;

$iRetVal := 0;
$xInitDone :=
$isStep = 1;

$x5ubSecOccupied = False;

$xBusy := FLLSE; // 16.06.2016 TBWL
$#xTagError := FALSE:

#x0rderWarning := FALSE;

TRUE;

Exported in SCL format

Export raw data from PLC in
xml, .scl and .pdf formats

Network 1: Test der Hardware > Aussprung

"XEA_Test_active” = 1 zum Steuern der Ausgange, damit sie nicht vom Anwenderprogramm 1
den.

%DB1.DEX270.0
“doVar'.

w2 ShuntPar.
A Tt cive”  Robotinolied true
i A {ReT—
Network 2: Handling der Optionen
S04
*Option
BN ENO:
Network 3: Zuweisung Hardware Bedienfeld
Exported in PDF format
7 July 2025 13



Dataset - Exploratory Data Analysis o —
3 Parts Data exploratory Analysis

Pre-processing data Generating explanations Information in a text file

« Creating chunks:

ZParts>
<hccess Scope="GlobalVariable" UId="21":> . S .
<Symbol> ° print(docs[8]. page_content
<Component Name="xEA Test_active" /> Tl'his PIC code is a logic statement which sets a Global Vari
</Symbol> H ave code endoset 3¢ mritten in Ctroactured Cantrol Lanmusse 1601Y shfch i€ ug : :
</hccess> he above code snippet Is written in Structured Control Language (SCL) which is us This YL codz shows & Programmabls Logic Controller (PLC) ¢
FRocess ScopeTtGlobalvariapler miamrazr ) o o This PLC code is a program that is designed to control a tx
“symbel> . . is used to define the functionality of a function block called "8ranch Defaulthes . . :
<Component Name="dbVar" /> This XML i3 2 PLC code that secs up a title for the program
<Component Name="ShuntPar" /> . R
<Component Name—"xRobotinoUsed" /> also defines the variables used within the function block It also contains some co Thiz PLC code creates a aystem of logic gates that control
) ,r;é Smholt This PLC code is setting up the connections between differe
<hccess Scope="LiteralConstant" UId="23"> Is used to control 2 rabotic arm used In 2 manufacturing process It reads data fro The PLC code in the XML is setting up & call to & function
<Constant>
<tenstantiyps>Bool</Constantivps> tisers to delay certaln actions It also Inirializes variables and sets up 2 state

<ConstantValue>true</ConstantValue>
</Constant>
</hccess> of & progran written In the Siesens SCL language It reads an RFID tag and extracts
<Part MName="Contact" UId="24" />
<Part Name="Contact" UId="25" />
<Part Name="ReturnValme" UILd="26" />
</Partsx

»» Conclusion: Remove all unuseful information from all files and generate explanations using an
LLM
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Semantic Matching =
Search algorithm using OpenAl embeddings and vector database

Vector DB

= E— Generates Embeddings

—_—
et embedding

OpenAl

Query &
Context

|

Semantic
Search

!

Query result = GPT-3

GPT-3
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Semantic Matching pa—
How does the matching work?

Semantic similarities

1

Comparison

/ cosine(x,y) "\

Vector

Vector

1

Neural Language Model

[} | ]

Explanations Query

(text files with all information) (User)
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Results and
Evaluation




Results pr—

Evaluation Metric: User feedback

query = "explain the main section of a branch”
get_answer(guery)

[+ [Document(page_content="The above code snippet is written in Structured Control Language (5CL) which is used to program and co
" The main section of a branch is responsible for reading the inputs and outputs of the function block and defining the variab

used within the function block. It also contains comments to explain the purpose of the function block. Additionally, it sets
imers to delay certain actions, initializes wvariables, and sets up a state machine to control the robot's behavior.®

[ 1 guery = "when does the LED gets activated”
get answer(guery)

[Document{page_content="to & function block called "OQutLED". This function block has an input parameter named "xInit" and an o
" The LED gets activated when the "Initial Call" local variable is set to true.

Multiple queries were resolved via the user feedback evaluation (extracted from the
TIA portal in PDF format) for all explanations stored in a vector database

University of Stuttgart, IAS 7 July 2025
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Results

User feedback evaluation method was applied for 40 different queries

University of Stuttgart, IAS

Query results : Precision@1

Negative: 11 - 27.5%

Positive:29 - 72.5%

M rositive

Il Negative

7 July 2025
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Conclusion and
Future Scope




Conclusion and Future Scope

University of Stuttgart, IAS

Successfully linked different user queries with the proper executable functions
by achieving high accuracy in semantic matching

This evaluation sheds light on whether implementing the system in nearly
real-time circumstances is feasible. Evaluating and analysing the outcomes of
the assessment metrics enabled to evaluate the effectiveness, advantages,
and drawbacks of the suggested solution

Explore and evaluate the complete dataset exported from the CP factory

Integrate with the TIA portal for live data and resolve user queries in a more
dynamic and efficient way

7 July 2025
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Large Language Models —

Zero-shot One-shot Few-shot

|
175B Params

Natural Language

60 Prompt

50 GPT-3 model consists of:
£ 40
) * 175B parameters
§ 30 No Prompt

+ 96 attention layers

* 3.2M batch size

1.3B Params

Number of Examples in Context (K)

{4} LLM uses in-context information efficiently
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Conception —
Phase1: Feature Extraction

Export (.PDF. Pre- Chunks
é —
| XML, .SCL) processing LLM

GPT-3, GPT-4 txt
Siemens PLC

+ All necessary data is exported from the Siemens TIA portal in the required format

 In the pre-processing step, each ladder network from the XML or SCL file is created into
chunks

* Using LLM such as GPT-3 the explanations are created for the following input chunk provided

University of Stuttgart, IAS 7 July 2025 25



P
J—
Dataset - Exploratory Data Analysis —
3 Parts Data exploratory Analysis
Pre-processing data Generating explanations Information in a text file
- Creating chunks: * Takes the chunks as input and - After generating all the results,
- Create chunks depending upon generates explanations using necessary explanations are
networks in the PLC ladder logic GPT-3 model stored in a text file for a ladder or
for XML file types - Eliminates all the unnecessary structure language code

information from the dataset and
provides necessary results in a
human-readable format

* As the LLM cannot process the
whole XML file at once, chunks
are created for each network

from the ladder code * In-context learning and prompts

* Pre-processing step for SCL files helps the LLM to perform better

are not required

»» Conclusion: Remove all unuseful information from all files and generate explanations using an
LLM

University of Stuttgart, IAS 7 July 2025 26



Semantic Matching
Pinecone Vector DB

Request Latency (50th percentile)

UPSERT QUERY

University of Stuttgart, IAS

UPDATE

Time:

12:06:14 AM

Request Type:

upsert 11.4462 ms

Request Type:

query 34,7410 ms

Request Type:
describe_index_stats  (),1140 ms

20

0005

DELETE

Five text files with explanations which
correspond to 33 vectors and a single

query :

Uploading time for 33 vectors:
11.45ms

Single query resolved in 34.7ms
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