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Motivation
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CP Factory

• Technical expert required in the field of 

automation for any query related to the 

system

• Complete information on how the 

system is programmed is not available

• Additional software required for 

interaction with the user e.g. SCADA, 

CMMS or an HMI 

• The entire system is not so friendly for 

new users



How can we use NLP models for the maintenance and 

diagnosis of an automation system?
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Thesis Problem Statement

{1} Typical SCADA/HMI system {2} Standard Transformer model

Why NLP ?

• Understanding of different types of code and the context of an automation system

• Adaptability and Scalability of Large Language Models



Background
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Methods used for diagnosis and maintenance in an Automation 
system

{3} CMMS system {4} SCADA system

Background
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Evolution of Large Language Models

GPT-3 model consists of 

• 175B parameters

• 96 attention layers

• 3.2M batch size

{5} Evolution of LLM’s

Background



Conception 
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Phase1: Feature Extraction

Conception

Export (.pdf, 

.xml, .scl)

Chunks

.txt 

Pre-

processing
LLM

GPT-3, GPT-4

Siemens PLC

Prompts: Large language models (LLMs) have made it possible for everyone to interact with them, 

using prompts in natural language.
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Conception

Phase2: Semantic Search

Conception

.txt 

Generates 

embedding

OpenAI / Sentence Transformers

Embeddings

Pinecone

Vector DB
Chunks

Query &

Context

GPT-3, GPT-4

Text Splitter

Semantic 

Search

Query result GPT-3, GPT-4



Implementation



Siemens TIA portal Dataset

Dataset 
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Siemens TIA Portal 

(V16)

Export raw data from PLC in 

.xml, .scl and .pdf formats

Exported in PDF formatExported in XML format Exported in SCL format



3 Parts Data exploratory Analysis

Dataset - Exploratory Data Analysis

Generating explanations

1 2 3

Conclusion: Remove all unuseful information from all files and generate explanations using an 

LLM

Pre-processing data

• Creating chunks:

Information in a text file
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Search algorithm using OpenAI embeddings and vector database

Semantic Matching
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Generates 

embedding

OpenAI

Embeddings

Vector DB

Query &

Context

GPT-3
Semantic 

Search

Query result GPT-3



How does the matching work?

Semantic Matching
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Vector Vector

Comparison

cosine(x,y)

Semantic similarities

Neural Language Model

Explanations

(text files with all information) (User)

Query

VectorVectorVector



Results and 
Evaluation
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Evaluation Metric: User feedback

Results

Multiple queries were resolved via the user feedback evaluation (extracted from the 

TIA portal in PDF format) for all explanations stored in a vector database
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Results

User feedback evaluation method was applied for 40 different queries



Conclusion and 
Future Scope



7 July 2025University of Stuttgart, IAS 21

• Successfully linked different user queries with the proper executable functions 

by achieving high accuracy in semantic matching

• This evaluation sheds light on whether implementing the system in nearly 

real-time circumstances is feasible. Evaluating and analysing the outcomes of 

the assessment metrics enabled to evaluate the effectiveness, advantages, 

and drawbacks of the suggested solution

• Explore and evaluate the complete dataset exported from the CP factory

• Integrate with the TIA portal for live data and resolve user queries in a more 

dynamic and efficient way

Conclusion and Future Scope
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Large Language Models

GPT-3 model consists of:

• 175B parameters

• 96 attention layers

• 3.2M batch size

{4} LLM uses in-context information efficiently 
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Phase1: Feature Extraction

Conception

Export (.PDF, 

.XML, .SCL)

Chunks

.txt 

Pre-

processing
LLM

GPT-3, GPT-4

Siemens PLC

• All necessary data is exported from the Siemens TIA portal in the required format

• In the pre-processing step, each ladder network from the XML or SCL file is created into 

chunks 

• Using LLM such as GPT-3 the explanations are created for the following input chunk provided



3 Parts Data exploratory Analysis

Dataset - Exploratory Data Analysis

Generating explanations

• Takes the chunks as input and 

generates explanations using 

GPT-3 model

• Eliminates all the unnecessary 

information from the dataset and 

provides necessary results in a 

human-readable format

• In-context learning and prompts 

helps the LLM to perform better

1 2 3

Conclusion: Remove all unuseful information from all files and generate explanations using an 

LLM

Pre-processing data

• Creating chunks:

• Create chunks depending upon 

networks in the PLC ladder logic 

for XML file types

• As the LLM cannot process the 

whole XML file at once, chunks 

are created for each network 

from the ladder code

• Pre-processing step for SCL files 

are not required

Information in a text file

• After generating all the results, 

necessary explanations are 

stored in a text file for a ladder or 

structure language code
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Pinecone Vector DB

Semantic Matching
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Five text files with explanations which 

correspond to 33 vectors and a single 

query :

• Uploading time for 33 vectors: 

11.45ms

• Single query resolved in 34.7ms
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