

University of Stuttgart Institute of Industrial Automation and Software Engineering

Fine-tuning of Large Language Models for Enhanced Semantic Interpretation of Microservices in Automation Systems

Examiner: Prof. Dr.-Ing. Michael Weyrich Supervisor: M.Sc. Yuchen Xia Arthor: Zheng Sun

Introduction

University of Stuttgart, IAS

Introduction

Task description

Robots check the quality of cardboard for packaging boxes.

quality_check("cardboard")

A low supply of copper wiring is delaying the assembly of electrical circuits.

order_material("copper wiring")

Background What can LLMs do?

Can incontinence be cured?

Clinician answer

Urinary incontinence can be cured in some cases, but this depends on its cause. If it's due to an underlying urinary tract infection or constipation, treating these issues will immediately stop the incontinence. If it's due to muscle weakness, such as that caused by childbirth, strengthening exercises to build muscle tone will help and can even cure it completely, over time. If it's due to an underlying nerve problem, damage to the spinal cord, or a structural abnormality, this is usually much harder to treat and will need to be assessed on a case-by-case basis.

Med-PaLM 2 answer

Incontinence means the accidental loss of urine or stool. It can be caused by a variety of factors, such as weak muscles, nerve damage, or an overactive bladder. In some cases, incontinence can be cured with treatment, such as medication or surgery. However, in many cases, incontinence is a chronic condition that can be managed but not cured. Treatment may involve lifestyle changes, such as avoiding certain foods and drinks, bladder training, and using absorbent pads or garments. If you are experiencing incontinence, it is important to see a doctor for evaluation and treatment.

Clinician review of Med-PaLM answer

Reflects clinical and scientific consensu	us 🗸 Low likelihood of harm 🗸 Correct reasoning 🗸
Correct reading comprehension 🗸	Correct knowledge recall 🗸 Relevant content 🗸
No missing important information \checkmark	No demographic biases 🗸

✓ Complete answer ● Incomplete answer

Med-PaLM 2

- Scored up to 86.5% on the MedQA dataset
- Rapid progress towards physician-level performance

Background What can LLMs do?

State	UBE Threshold
Alabama, Minnesota, Missouri, New Mexico, North Dakota	260
Indiana, Oklahoma	264
Connecticut, District of Columbia, Illinois, Iowa, Kansas, Kentucky	
Maryland, Montana, New Jersey, New York, South Carolina, Virgin Islands	266
Michigan	268
Alaska, Arkansas, Colorado, Maine, Massachusetts, Nebraska	
New Hampshire, North Carolina, Ohio, Oregon, Rhode Island,	
Tennessee, Texas, Utah, Vermont, Washington, West Virginia, Wyoming	270
Idaho, Pennsylvania	272
Arizona	273

Table 8. Uniform Bar Exam (UBE) Minimum Passing Score by State.

(0-shot)GPT-4: 297

University of Stuttgart, IAS

[2]

Background

What can LLMs do?

LLM4PLC[3]

Background

Fine-tuning

- When do we need fine-tuning?
- PEFT vs. RLHF
- PEFT(Parameter-efficient Fine-tuning) :

• RLHF(Reinforcement-Learning from Human Feedback):

Contents

- Conceptual Design & Implementation
- Evaluation
- Summary and Outlook

Function Definition & Dataset Generation

Train Data: 1000 Test Data: 100

Example (transport):

Trivial: Input: Robots transport metal sheets from storage to the cutting machine. Output: transport("metal sheets", "storage", "cutting machine")

Complex: Input: Online orders are packed in the warehouse, awaiting to be placed at the front desk. Output: transport("online orders", "warehouse", "front desk")

Model Selection

- Phi-3-mini: 3.8B parameters vs. ChatGPT-3.5: 175B parameters
- Can a small language model finish the given task?
- Experiment:

Who wrote a room of one's own?

Will it be windy in Paris next Tuesday?

WikiSearch("A Room of One's Own") GetWeather("Paris", "next Tuesday")

Model Selection

• Results (100 test data for each command type)

Aspect Type	Awareness	Correct in Type	Correct in Type and Information
WikiSearch()	8	6	3
GetWeather()	69	63	59

• Trainable parameters: 0.65% of all the parameters.

Fine-tuned Phi-3-mini has potential to complete the downstream task!

Method Selection

- LoRA(Low Rank Adaptation)
- Update process: $W_0 + \Delta W = W_0 + BA$, where $W_0 \in \mathbb{R}^{d \times k}$, $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$.
- Forward pass can be written as $h = W_0 x + \Delta W x = W_0 x + BAx. (1)$
- Low Rank: rank $r \ll min(d, k)$

Test data: 100

Robotics Commands

# of Target Modules	LoRA Rank	# of Trainable Parameters(%)	Awareness(%)	Correct in Type(%)	Correct in Type and information(%)
	8	0.1233	73	57	45
2	16	0.2464	39	27	21
	32	0.4915	82	55	36
	8	0.3282	69	59	45
4	16	0.6543	91	72	66
	32	1.3001	65	59	58
	8	0.3355	69	57	47
5	16	0.6688	82	74	72
	32	1.3287	81	69	65

Fine-tuning vs. Using Prompt(zero-shot)

Fine-tuning (LoRA)

Using Prompt(zero-shot)

Prompt: You are a helpful assistant

who are able to generate the correct commands for robots, according to the input missions. You have access to the

(1)transport(material:str, place A:str,

following commands:

Fine-tuning vs. Using Prompt(zero-shot)

Aspect Method	Awareness	Correct in Type	Correct in Type and Information	Extra Command In Total	GPU RAM	Input token	Time
Fine- Tuning	82	74	72	0	10.9 GB		
Using Prompt	98	90	16 (↓78%)	183	3.5 GB	~30 folds	~1.5x slower

Test data: 100

Catastrophic Forgetting

Dataset Model	MMLU-Nutrition (3-Shot)	GSM8K(0-Shot)
Pre-Trained	56.5%	92.5%
Fine-Tuned	42.0%(\25.6%)	85.5%(↓7.6%)

- MMLU: Multi-choice questions cover a wide range.
- GSM8K: school math problems with diverse complexity.
- Each dataset contains 200 test data.
- "Memorized" knowledge are easier to forget than reasoning skills

Summary and Outlook

Summary and Outlook

- A fine-tuned model with 3B parameters can complete the specific task! (72%)
- LoRA as a fine-tuned method can achieve great performance while reducing parameters!
- Fine-tuned model with high quality data is more effective and efficient in the long run!
- Future work: Fine-tune more models as AI agents to finish complex tasks with high quality.

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Zheng Sun

e-mail st181999@stud.uni-stuttgart.de phone +49 (0) 711 685fax +49 (0) 711 685-

University of Stuttgart Institut of Industrial Automation and Software Engineering

Examples of dataset

	Input	Output
Trivial	Robots transport metal sheets from storage to the cutting machine.	transport("metal sheets", "storage", "cutting machine")
Complex	Online orders are packed in the warehouse, awaiting to be placed at the front desk.	transport("online orders", "warehouse", "front desk")
Trivial	Robots order more fuel oil.	order_material("fuel oil")
Complex	he inventory system is low on RFID tags for tracking high-value items.	order_material("RFID tags")
Trivial	Robots send notifications to the lab analysis team.	send_notification("Lab Analysis Team")
Complex	The robot encounters a network connectivity issue in the office.	send_notification("IT Support")
Trivial	Robots check the quality of steel sheets for car body production.	quality_check("steel sheet")
Complex	A chemical processing plant receives barrels of specialty solvents.	quality_check("specialty solvents")
Trivial	The robot checks the weight of an object it is carrying using a weight sensor.	get_sensor_reading("weight sensor")
Complex	The robot needs to detect obstacles in its path.	get_sensor_reading("ultrasonic sensor")

Examples of training data(general-purposed)

Instruction: You are a helpful assistant who are able to provide correct answer. If you are not sure about the answer or want to look up some updated information to produce a better answer, you can use API calls to help you get information required to generate correct answer. You have access to the following APIs: (1)WikiSearch("term"): You can use this API to look up information on Wikipedia.You can do so by writing "Wiki Search("term")" where "term" is the search term you want to look up. (2)GetWeather(city:str, time:str): You can use this API to look up information about weather and specified time. You can do so by writing "GetWeather(city, time)", where "city" is the city you want to look up, and "time" is the specified time you want to know. Here is a example of API calls: #### Input: Where do you find the engine number on a car?

Examples of training data(robotics)

Instruction: You are a helpful assistant who are able to generate the correct commands for robots, according to the input missions. You have access to the following commands: (1)transport(material:str, place A:str, place B:str): You can use the command to transport the materials. You can do so by writing "transport(material, place A, place B)", where "material" is the material to be transport, "place A" is the original place of material, and "place B" is the destination of transportation. (2)order material (material name:str): You can use the command to order materials. You can do so by writing "order material (material name)", where "material name" is the name of material which you want to order. (3)send notificaton(person name:str): You can use the command to send notification to person. You can do so by writing "send notificaton(person name)", where "person name" is the name of person who you want to send notification to. (4)quality check(material:str): You can use the command to check the quality of material. You can do so by writing 'quality check(material)", where "material" is the material which you want to do quality check. (5)get sensor reading(sensor:str): You can use the command to read the information from sensor. You can do so by writing "get sensor reading(sensor)", where "sensor" is the sensor which you want to read. Here is an example of robot commands: ### Input: The robot finishes an inventory audit. ### Output: send notification("Inventory Manager")

PEFT(Parameter-Efficient Fine-Tuning)

[1] K. Singhal *et al.*, "Towards Expert-Level Medical Question Answering with Large Language Models," May 16, 2023, *arXiv*: arXiv:2305.09617. doi: 10.48550/arXiv.2305.09617.

[2] Katz, Daniel Martin and Bommarito, Michael James and Gao, Shang and Arredondo, Pablo, GPT-4 Passes the Bar Exam (March 15, 2023). 382 Philosophical Transactions of the Royal Society A (2024), Available at SSRN: <u>https://ssrn.com/abstract=4389233</u>

Bibliography

[3] M. Fakih, R. Dharmaji, Y. Moghaddas, G. Q. Araya, O. Ogundare, and M. A. A. Faruque, "LLM4PLC: Harnessing Large Language Models for Verifiable Programming of PLCs in Industrial Control Systems," in Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice, Apr. 2024, pp. 192–203. doi: 10.1145/3639477.3639743.

[4] E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models," Oct. 16, 2021, arXiv: arXiv:2106.09685. Accessed: Feb. 27, 2024. [Online]. Available: http://arxiv.org/abs/2106.09685

[5] W. X. Zhao *et al.*, "A Survey of Large Language Models," Nov. 24, 2023, *arXiv*: arXiv:2303.18223. Accessed: Apr. 10, 2024. [Online]. Available: http://arxiv.org/abs/2303.18223