University of Stuttgart

Institute of Industrial Automation and Software Engineering

Generation of knowledge graph from textual data for describing causal system behaviors on the example of an automated production facility

Name : Soheb Hanif Teli

Study Program: INFOTECH

Agenda

Motivation Literature research Methods Results Evaluation System Overview Summary and Outlook

Motivation

Automated generation of Knowledge Graph

Natural Language Processing

Natural Texts (Manuals, articles, Etc.)

- Need for knowledge graph
- Meanwhile, minimize human effort

Knowledge Graph Property Graph

For instance:

"CP-Storage has a storage robot that can be used to load or unload palettes from 32 selves and an operating voltage of 230/400 AC"

Literature research

Text to KG How could the KG be generated?

General Overview

3 Methods to generate KG in detail

Approach (1/3) Text to KG

Ontology – Based Approach

Approach (1/3) Text to KG Ontology Matching

Consider the example:

"Robotino docks at branch 1"

Approach (2/3) Text to KG

Linguistic – Based Approach

"Robotino is at CP-Storage, it moves to branch 1" Maps 'it' to 'Robotino' Coherence Robotino is at CP-Storage, Robotino moves to Resolution branch 1 Text Simplifies sentences summarization Robotino is at Cp-Storage. Robotino moves to / normalization branch 1 Robotino - NOUN Is - ADP Cp-Storage - NOUN POS tagging Branch - NOUN moves - VRB KG generated 1 - NUM CP - Storage Triple creation Robotino Branch 1

Relation Extraction

Approach (2/3)

Text to KG

• Consider the example:

Identifying causal relations

Approach (3/3) Text to KG

Prompting using GPT model

Role and Goal:

You are managing a knowledge graph database. Your goal is to extract triples for the knowledge graph from the given input text. The triples must be consistent with the data already present in the knowledge graph and they should depict causal relationships between nodes. You should take into account the provided context, instructions, and examples. Following these, you generate triples for the graph that present causal relationship.

Context:

- (1) The data in the text provided is regarding a production facility which have several modules like storage, branch, Robotino.
- (2) The text mostly includes PDFs manuals for the modules and the software components fleet manager and MES that provides instruction to these modules
- (3) The aim is to have the knowledge graph present all relevant information from these texts as causal dependencies between them and their sub components
- (4) The nodes in the graph should have enough property relationships as well so as to present them as digital twin of their physical counterpart in the facility

Instruction:

As the database manager, extract relevant information from the texts for the knowledge graph.

Make sure there are no repetition of nodes or similar nodes.

If a similar node comes in like 'robot' map it to the already present node that represent that module. In this case it would be 'Robotino'

The structure of the triples can be similar to the knowledge graph structure or can follow a subject – verb – object structure as well

The extracting information must be regarding the knowledge graph and the irrelevant information can be filtered

Example:

Input:

'Robot docks at branch 1'

Output:

(Robotino, docks, CP Branch 1)

Results

Triple Creation Comparison of results

1. Switch on Robotino

Press the power button [1] on the Robotino for 3 seconds. The Robotino will start up. When the Robotino has booted up completely, the lamps on the signal tower should light up or flash [2]. Repeat these steps with all Robotinos to be used.

Note:	meaning	of the	lights:

- Robotino is in the idle state. He's waiting for a job.
- Robotino is in busy status. A job is being processed.
- Drive system is deactivated (emergency stop is active or obstacle on the laser scanner)
- Robotino is in the idle status and not localized (status after startup).
- The Robotino is busy and has lost localization (Robotino needs to be localized).
- Client Robotino has no connection to Master Robotino.

2. Start the Robotino Factory

Subject	Verb	Object
Robotino	Know	Initial space
Robotino	Has	Idle master state
Robotino	ls in	Idle startup
Step	Translated by Laser scann	
Mouse click	Helps	Mapping
light	Indicates	status
Task	Assigned to	Robotino
User	Pressed Manual butto	

Entity	Relation	Entity	
position	Changes	Robotino	
Fleet manager	Controls	Move	
Move	Changes	Robotino	
User	Interacts	button	

1.	Triple: (Robotino, has, power button)
2.	Triple: (Robotino, start up, lamps on signal tower)
3.	Triple: (lights, indicate, status of Robotino)
4.	Triple: (Robotino, use, Robotino Factory)
5.	Triple: (Robotino Factory, assign, home position)
6.	Triple: (multiple Robotinos, active at same time, lead to confusion)
7.	Triple: (click, connection symbol, establish connection to Master Robotine)
8.	Triple: (IP address, entered, pop-up screen)
9.	Triple: (Master Robotino, marked, 1)
10.	Triple: (Robotino, selected, left mouse click)
11.	Triple: (activation of "Show laser scanner" function, helps, align Roboind
	precisely)

Use case 1: Formal Data Storage

Properties and causal relationships of a component (E.g.: Robotino)

Ø Ø ø ¢ ¢ 16

Use case 2: Reasoning Querying – Robotino stops use case

Evaluation

Evaluation

Comparison of all 3 approaches (Ground truth: 44 triples)

Parameters	Ontology Matching	Relation Extraction	GPT - Prompting
Triples Extracted	28	40	47
correct triples (correctness ratio)	20/28	40/40	43/47
False Positive (wrongly extracted)	8	2	6
False Negative (failed to extract)	24	6	3
Precision	20/28 = 0.7142	38/40 = 0.95	41/47 = 0.8723
Recall	20/44 = 0.4545	38/44 = 0.8636	41/44 = 0.9318
F1 - score	0.5521	0.9047	0.9010

- Ontology –based approach is limited by the entity classification
- Linguistic approach tries to extract all possible relations but works under the assumption of one triple per sentence
- GPT creates extra triples by generating text

System Overview

Proposed System Diagram

Summary and Outlook

- Summary
 - linguistic approach \rightarrow all possible triples, but not all relevant
 - ontology based approach \rightarrow more relevant results, but limited to the template KG
 - GPT Prompt-Engineering \rightarrow relevant and rich results, but too creative
- A comprehensive system is developed to automatically generate KG
- Outlook
 - Add live sensor data into KG

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Soheb Hanif Teli

e-mail st175461@stud.uni-stuttgart.de phone +49 (0) 711 685fax +49 (0) 711 685-

University of Stuttgart Pfaffenwaldring 47, 70550

Literature References

[1] Agrawal, G.; Deng, Y.; Park, J.; Liu, H.; Chen, Y.-C. Building Knowledge Graphs from Unstructured Texts: Applications and Impact Analyses in Cybersecurity Education. Information 2022, 13, 526. <u>https://doi.org/10.3390/info13110526</u>

[2] Voinov, Artem, and Ilya Senokosov. "Ontological models of cyber physical systems." Journal of Physics: Conference Series. Vol. 1889. No. 2. IOP Publishing, 2021.

[3] Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, Aiping Li, "A Practical Approach to Constructing a Knowledge Graph for Cybersecurity" Engineering, Volume 4, Issue 1, 2018, Pages 53-60, ISSN 2095-8099, https://doi.org/10.1016/j.eng.2018.01.004.

[4] Abu-Salih, B. Domain-specific knowledge graphs: A survey. J. Netw. Comput. Appl. 2021, 185, 103076. [Google Scholar] [CrossRef]

[5] Kumar, A. and Dinakaran, S., "Textbook to triples: Creating knowledge graph in the form of triples from AI TextBook", arXiv eprints, 2021. doi:10.48550/arXiv.2111.10692.

[6] Honnibal, M. & Montani, I., 2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.

[7] Asghar, Nabiha. "Automatic extraction of causal relations from natural language texts: a comprehensive survey." arXiv preprint arXiv:1605.07895 (2016).

[8] Xia, Yuchen & Shenoy, Manthan & Jazdi, Nasser & Weyrich, Michael. (2023). Towards autonomous system: flexible modular production system enhanced with large language model agents.

[9] Ellen Jiang and Kristen Olson and Edwin Toh and Alejandra Molina and Aaron Michael Donsbach and Michael Terry and Carrie Jun Cai, "Prompt-based Prototyping with Large Language Models", 2022
24

Backups

- Robotino moves to CP-Storage and docks itself there.
- The gripper in CP-Storage places the palette on the conveyor belt
- The palette is loaded on to the Robotino and then it undocks itself

Functional System Design (2/3) Text to KG

Text to KG Filtering – Graph Embeddings

Text to KG

Filtering – Knowledge graph embeddings

