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• Black box 

• What is happening during the text 

generation? (Transparency)

• Is its output what we really want? 

(fairness and beneficial outcomes)

• Model Understanding and Improvement

• Understand the inner mechanisms of 

Model

• Improvement of model development
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Interpret the Black Box of Large Language Models (LLMs)

Motivation & Basis

[1] 



• Motivation & Basis

• Conceptual Design

• Implementation

• Evaluation

• Summary and Outlook
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Agenda



Motivation & Basis



•
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Large Language Model Transformer Architecture

Motivation & Basis

• The Transformer Model architecture was 

introduced in the paper “Attention is all 

you need,” which consists of “Encoder” 

and “Decoder.”

• Encoder-only LLM example: BERT 

(embedding) 

• Decoder-only LLM example: GPT4, 

LlaMA-2. (text generation)

[2] 
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Post-Normalization and Pre-Normalization Architecture

Motivation & Basis

[3] 

*RMS (Root Mean Square) Normalization is a simplification of the original LayerNorm.
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Post-Normalization and Pre-Normalization Architecture

Motivation & Basis

[3] 

Normal(Post-

normalization)

Pre-normalization

Norm 

position

LayerNorms after 

Attention and MLP

*RMSNorms (LayerNorms) 

before Attention and MLP

Focus Emphasizes 

normalization after each 

major operation to 

stabilize the learning 

process.

Potentially improving 

training stability and speed.

*RMS (Root Mean Square) Normalization is a simplification of the original LayerNorm.

• LlaMA-2 uses a pre-normalization architecture.

• DeepNorm combines the good performance of 

Post-LN and the training stability of Pre-LN.



• Interpreting outputs of each hidden 

layer’s attention mechanism output and 

block output.

• Attention mechanism output – what texts 

does the LLM focus on?

• Block output – what results does the LLM 

generate?
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Understand Large Language Model Thoughts

Motivation & Basis

[3] 



• Flow: Transforms input to embeddings, 

processes through layers to output logits, and 

probes its intermediate results. 

• Probing Intermediate States: Directly using the 

model‘s unembedding layer to decode each 

hidden layer‘s attention mechanism output and 

block output. 

To understand how information evolves and 

contributes to the final output. [4]
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Probing Techniques – Logit Lens

Motivation & Basis

LLM

Logit Lens

vector

text

vector

vector

text



• Introduced in “Eliciting Latent Predictions 

from Transformers with the Tuned Lens”

• Similar to the Logit Lens implementation.

• The Tuned Lens refines the Logit Lens by 

introducing “translators,” which use machine 

learning to train. 

• These translators adjust the hidden states 

layer by layer, ensuring they more closely 

match those expected at the final output layer.
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Probing Techniques – Tuned Lens

Motivation & Basis

[5] 

Tuned Lens

LLM
vector

vector

vector

text

text
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Comparison of Logit Lens and Tuned Lens

Conceptual Design

Logit Lens (Left) Tuned Lens (Right)

Lens 

Architecture

Projection Transformation

Interpretability Direct Refined Token

Methodology Mapping Training (Machine 

Learning)

Transparency High and 

Straightforward

High but close aligned 

with the final output



Conceptual Design



• Instruction Prompt + Question Text

• Probing Technique on LLM’s Hidden

Layers

➢ Logit Lens 

➢ Tuned Lens

• Analyzing the Hidden Layers’ 

Outputs and make further 

processing.
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System Overview

Conceptual Design
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Probing Technique in LlaMA 2 architecture

Conceptual Design

Probing point

MLP 

output

intermediate 

output



Implementation
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Instruction Prompt with Question Text

Implementation

"""<s>[INST] <<SYS>>

Role and goal: 

Your role is to act as an intelligent problem-solver, tasked with selecting the correct answer from a set of 

multiple-choice options. Your goal is to analyze the question carefully and each of the provided options, applying 

your extensive knowledge base and reasoning skills to determine the most accurate and appropriate answer.

Replace the 

“{{inputText}}” with the 

Question Text

• Role and goal

• Context

• Instructions

• Example

• Input

• Output

Context:

The input text is a question with multiple-choice options. The correct answer is indicated by the option label A, B, 

C, or D.

1. Question: A clear query requiring a specific answer.

2. Options: A list of possible answers labeled with possible answer A.First possible answer B.Second possible answer 

C.Third possible answer D.Fourth possible answer

Instructions:

Analyze the question and options provided.

Use your knowledge to assess each option.

Employ reasoning to eliminate clearly incorrect options.

Identify the most accurate answer based on the information given.

Conclude by justifying your selection, clearly indicating your choice by referencing the option label A, B, C, or D.

You should only output one capitalized letter indicating the correct answer.

Example:

Input: // you will receive the question and options here.

Output: The correct answer is {one of A, B, C, D} // you will output the correct answer, replace {one of A, B, C, D} 

with the correct option label A, B, C, or D.

Now you can start to answer the question with given options to give the correct answer.

<</SYS>>

Input: {{inputText}}[/INST]

Output: The correct answer is """
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Question Text – Multiple Choices Question

Implementation

Question: An industry that create a lot of waste is? Options: A.Solar Power Companies B.Recycling companies C.water production 

companies D.Cleaning Companies.

Question: Which of the following is NOT a characteristic of perfectly competitive industry? Options: A.Free entry into the industry 

B.Product differentiation C.Perfectly elastic demand curve D.Homogeneous products.

Question: Which of the following elements is not part of Porter's Five Forces model for industry competitiveness? Options: A.Threat of 

substitutes B.Threat of suppliers C.Power of buyers D.Threat from government.

Question: Which of the following is an example of a bulk-gaining industry? Options: A.Steel B.Bottled orange juice C.Paper D.Copper.

Question: The industry that makes plastic army figures uses a small fraction of the plastic demanded for all purposes. On this basis, 

we can conclude that the army-figures industry is most likely a(n)? Options: A.increasing-cost industry constant-cost industry 

B.decreasing-cost industry C.profit-making industry.

Question: Which of the following has the highest predictive validity in personnel selection in industry? Options: A.A projective 

technique B.An objective personality inventory C.An interview by the personnel manager D.A biographical inventory.
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Wrappers for Attention Mechanism and Block Outputs Interpretation

Implementation

• The wrapper for input 

progresses through the model in 

order to decode the 

intermediate results.

residual stream residual stream

Block Output

Attention Mechanism Output

LLaMa 1 

layer
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Logit Lens Interpretation

Implementation

LLM

Logit Lens probing
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Tuned Lens Interpretation

Implementation

Tuned Lens

LLM
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Visualizing the CSV data in Heatmaps

Implementation

• Create interactive heatmaps based on each 

token’s probabilities.



Evaluation



Logit Lens Tuned Lens

Attention Mechanism Both look similar on each layer’s attention mechanism output. However

• The option labels begin (A, B, C, 

D)  to be focused in layers 17-20

• More unrecognized words or non-

English words, difficult to interpret

• The option labels begin to be 

focused in layers 16-18

• More readable English words

Block Output • Random word outputs before 

layers 17 - 20

• The option label outputs after 

layers 17 - 20

• The option number(1, 2, etc.) 

outputs before layers 17 - 18

• The option label outputs after 

layers 17 - 18
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Result Comparison of Logit Lens and Tuned Lens
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Result Comparison of Logit Lens and Tuned Lens

Evaluation

Question: Which city is the capital of Germany? 

Options: A.London B.Paris C.Berlin D.Amsterdam

• Easier Question:
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Attention Mechanism Output (Easier Question)

Evaluation

Tuned LensLogit Lens

Question: Which city is the capital of Germany? 

Options: A.London B.Paris C.Berlin D.Amsterdam
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Block Output (Easier Question)

Evaluation

Tuned LensLogit Lens



Summary and Outlook



• Comparative Effectiveness in Model Layers

Attention Mechanism – Tuned Lens yields more predictive and understandable token interpretations 

than Logit Lens in complex prompts.

Block Output – The performance of the Tuned Lens is more consistent across various hidden layers 

compared to that of the Logit Lens.

• Training own Tuned Lens

The decoding result could be improved by training own Tuned Lens for different LLMs.

• Limitations and Model Capacity

Llama-2-7B might not be able to handle complicated queries effectively. 

Upgrading to more robust models like Llama-2-13B or Llama-2-70B could enhance the accuracy of 

both intermediate and final results.
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Summary and Outlook
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