
Institute of Industrial Automation

and Software Engineering

LLM-Powered
Automation of
Robotic Tasks in
Warehouse

Zhe CAO

Elektromobilität

Supervisor: Yuchen Xia M.Sc.

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

2Universität Stuttgart 20.08.2020

The Evolution of Warehouse Management

Traditional Warehouse

Rule-based sorting mechanism

High-level Automated Warehouse

Adaptive sorting system

20.08.2020Universität Stuttgart 3

Semantic Interpretation + Task solving

LLM-Powered

Automation

Background

[1]

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

20.08.2020Universität Stuttgart 4

20.08.2020Universität Stuttgart 5

What is LLM ?

Large language model is a type of artificial intelligence trained on a vast amount of text

data, capable of understanding and generating natural language.

How can LLM help us ?

• Semantic Interpretation

• Task solving

"input text" : "Please store

these two golden watches

for me"

Control sequence

Automation system

planning

Sort items Result

demandtext

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

20.08.2020Universität Stuttgart 6

20.08.2020Universität Stuttgart 7

System function

LLM

System

Warehouse

system

pick(….) place(…)

LLM system

Input: User request in natural language

Output: Control sequence

Pick me

a watch

20.08.2020Universität Stuttgart 8

LLM system overview
LLM

System

Data

query?

Database

yes no

FUNCTION

check_available_shelves()
Result

Result

pick(# watch from...)

place (# watch onto

shelf)

Control

sequence

Task generator

SQL

SQL Query

Task Planer move to …

Pick me a

watch

Retrieve data

Generate control sequence

20.08.2020Universität Stuttgart 9

How to build the LLM Multi-Agent system ?

Multi-agent system: Task Generator + SQL Query + Task Planer

[2]

Store these two

golden watches

Role

Definition

You are a task generator for a warehouse management system,

creating tasks based on user requests.

Warehouse

System

Overview

1. Shelf Attributes: <shelf_id>, <realtime_temperature>,

<realtime_humidity>, <realtime_light_intensity>;

2. Item Attributes: <item_id>, <position>, <size>, <color>, <priority>,

<value>, <condition>, <required-temperature>, <required-humidity>,

<required-light-intensity>;

3. All attribute data is stored in a SQL database, where it can be

efficiently stored, queried, and managed.

Input The essence of diverse user requests includes the following aspects:

1. Organizing items based on specific requirements (…)

2. Inbound and outbound of items (…)

3. Emergency handling (…)

4. Reset robotic arm (…)

5. Degree of freedom check (…)

6. Movement (…)

7. Freeze (…)

The first to third requests involve data query, while the fourth to

seventh do not involve.

Output The output requirements vary depending on the type of input:

1. Inbound: First find out if there are shelves available for items to be

stored, when yes, list all possible shelves; when not, return a denial of

the request and explain the reason.

(…)

Auxiliary

Instruction

1. Return a JSON structure like: { "task": "...", "data query": "true/false",

"required data": "{...some attributes of items...}" };

2. For the value of key "task", you should generate it based on the

input-/output requirements above.(…)

1. Task Generator

20.08.2020Universität Stuttgart 10

How to build the LLM Multi-Agent system ?

Multi-agent system: Task Generator + SQL Query + Task Planer

[2]

Role

Definition

Convert JSON-defined data requirements into accurate SQL queries.

Warehouse

System

Detail

1. Tables and Attributes (…)

 item(id, size, color, value, priority, position, environmental condition)

 shelf(id, environmental condition)

 environmental condition(temperature, humidity, light intensity)

2. Primary Key and Foreign Key Relationships (…)

 temperature→item; humidity→item; light intensity→item;

 shelf→item.

Input A JSON structure including information about <task>, <task type>, and

<required data>...

Output For JSON Input:

1. "task type":"inbound", first check if there are shelves available

(means there's no item in the shelf and its condition fits for the storage)

for items to be stored, you need to filter all shelves that meet the

storage conditions based on the attributes of the items to be stored and

output these shelves in a table format, If no shelves meet the

requirements, your code should also indicate this.

2. "task type":"outbound“ (…)

Return a single explanatory message.

Auxiliary

Instruction

1. Standard SQL Only: Ensure that the SQL query uses standard SQL

constructs (e.g., CASE, EXISTS, UNION). Avoid procedural constructs

like IF, THEN, or loops unless explicitly stated for stored procedures.

2. Specific Conditions: Define all conditions explicitly in the query.

Avoid placeholders like conditions_for_item_A and ensure all filtering

logic is directly embedded.

3. Always start your code with "USE warehouse“ (…)

2. SQL Query

20.08.2020Universität Stuttgart 11

How to build the LLM Multi-Agent system ?

Multi-agent system: Task Generator + SQL Query + Task Planer

[2]

Role

Definition

You are a task planer of a warehouse management system

responsible for generating a function-sequence to complete the task.

General

description

of the

warehouse

system

There are two components in this warehouse system: item, shelf.

1. A shelf has 4 attributes: <shelf_id>, <realtime_temperature>,

<realtime_humidity> and <realtime_light_intensity>;

2. An item has 10 attributes: <item_id>, <position>, <size>, <color>,

<priority>, <value>, <condition>, <required-temperature>, <required-

humidity> and <required-light-intensity>;

The values of item attributes, as well as shelf information, are stored

in the database.

Callable

Function

1. pick (#item_id from #item_location)

This function is used to pick an item with a specific identification from a

specific location.

2. place (#item-id to #item_location)

This function is used to place an item with a specific identification on a

shelf with a specific identification.

Every time the pick and place functions are called, you must clearly

indicate the specific <shelf_id> or other location information;

Input The input consists of two possibilities：
1. In the input in JSON format, the value of the key ''data query'' is

''true'', which means the task involves data in database.

2. In the input in JSON format, the value of the key ''data query'' is

''false'', which means the task doesn't involve data in database.

Standard

operation

procedure

1. Inbound: 1) You get the information about the item to be stored and

current available shelves from input. 2) You generate a function-call

sequencen including pick and place, so that the item can be stored

from other place to these shelves (use the name of the

item(candy/cellphone/toy...) as its id)

2. Outbound (…)

3. Task Planer

Result from

database

Output 1.The function-sequence must be in a JSON structure like

{''step1'':[''pick(#item_id from # item_location)'',''place(#item_id to

#item_location)'']; "step 2":["pick(#item_id from #item_location)",

''place(#item_id to #item_location)''] ...}.

#item_location including two possibilities： <shelf>(in this case you also

need to show <shelf_id> in the function-sequence) and <other place>.

2. If an item cannot be placed on any shelf, include a "No suitable shelves

currently available for item <item_id>." message in the output.

3. Output the final distribution of items, with the position "other" for items that

could not be placed on any shelf in the following JSON format: {"item-id": ...,

"position": "shelf_id"; ...}.

Auxiliary

Informati

on

1. For standard operation procedure of organizing items based on specific

requirements, make sure that all items, regardless of its position

before(shelf/other place), are placed passing to the criteria given in different

shelves sequentially.

2. Clearly specify #item_id and #item_location at each pick-and-place

function-call sequence.

3. One shelf can only hold one item.

4. Output the function-sequence in json form without explanation.

20.08.2020Universität Stuttgart 12

System Pipeline

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

20.08.2020Universität Stuttgart 13

20.08.2020Universität Stuttgart 14

1. Database (defined in MySQL)

Implementation

20.08.2020Universität Stuttgart 15

Implementation

3. Supplement specific information in prompts.

2. Insert value in database.

4. Coding.

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

20.08.2020Universität Stuttgart 16

20.08.2020Universität Stuttgart 17

Evaluation

Test scenarios (with total 6 test cases, each case is executed 10 times)

Test with Data Query Test without Data Query

Test Case Text Input Test Case Text Input

Storage {"Store the watch"} Emergency

Handling

{“Fire alarm"}

Retrieval {"Take out all items with high value"} Initialization {“Robotic arm Reset"}

Item

organization

{"Rearrange items according to their

value, high value first, then medium

value at last low value"}

Movement {“Go to next shelf"}

20.08.2020Universität Stuttgart 18

Evaluation

Storage

User’s input Success Rate

(Test pass/Test

total)

Typical bad case Reason

1. {"Store the watch"} 0.5 (5/10) SQL error

2. {"Store these two

golden watches"}

0.2 (2/10) Asyntactic function

calls，ambiguity

3. {"Store these two

watches with high

value, no specific

requirement for

temperature, humidity

and light intensity"}

1.0 (10/10) —— ——

How to

fix?

The more specific the input is and the better it matches the database content, the easier it

is to accurately complete the task, while limiting semantic diversity.

20.08.2020Universität Stuttgart 19

Evaluation

Retrieval

User’s input Success

Rate

Typical bad case

and Reason

1. {"Take out all items with high value"} 0.9

Lack of necessary information

2. {"Take out all items with high priority and

medium size, no specific requirement for

temperature, humidity and light intensity"}

1.0 ——

3. {"Take out all items with low priority, low

value, small size and stored in the shelf with

medium temperature, low humidity and low

light intensity"}

1.0 ——

4. {"Take out all items whose current shelves

do not match their storage requirements

(temperature, humidity and light intensity)"}

1.0 ——

20.08.2020Universität Stuttgart 20

Evaluation

Items Organization

User’s input Success

Rate

Typical bad cases Reason

1. {"Rearrange items

according to their

value, high value first,

then medium value at

last low value"}

0 Data distortion

Asyntactic function

calls

“real” control demand but actually not

feasible

Textual input not

enough for high-

complexity tasks

How to fix? Data stored in a SQL database is not intuitive enough for tasks of high

complexity. LLM needs a more “visualized” item distribution.

20.08.2020Universität Stuttgart 21

Evaluation

Tasks without Data Query

Test cases User’s input Success Rate

Emergency Handling {“Fire alarm"} 1.0

Initialization {“Robotic arm Reset"} 1.0

Movement {“Go to next shelf"} 1.0

Result LLM can handle these tasks with lower complexity.

1.Background

2.Basis

3.Conceptual Design

4. Implementation

5.Evaluation and Discussion

6.Outlook and Summary

20.08.2020Universität Stuttgart 22

20.08.2020Universität Stuttgart 23

Summary and Outlook

Summary

LLM based robotic arm

Task Generator

SQL Query Agent

Database

Task Planer

LLM Agent

Debugger

External Information

Processor

LLM

LLM Agent

LLM multi-agent

system

20.08.2020Universität Stuttgart 24

Summary and Outlook

New System Pipeline

Potential SQL errors →

Iterative debugger

Data distortion →

External data store

Vielen Dank!

Institute of Industrial Automation

and Software Engineering

ZHE CAO

E-Mail st186915@stud.uni-stuttgart.de

Universität Stuttgart

Quelle

1. https://www.educba.com/what-is-neural-networks/

2. Y. Xia, N. Jazdi, and M. Weyrich, "Applying Large Language Models for Intelligent Industrial Automation: From

Theory to Application: Towards Autonomous Systems with Large Language Models" Institute of Industrial

Automation and Software Engineering, University of Stuttgart, 2023.

20.08.2020Universität Stuttgart 26

	Slide 1
	Slide 2
	Slide 3: Background
	Slide 4
	Slide 5: What is LLM ?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Quelle

