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Glossary 

XML A flexible text format used to create structured documents by defining a 
set of rules for encoding documents in a format that is both human-
readable and machine-readable. 

NLP A process or technique by applying computer techniques to analyze and 
synthesize natural language and speech 

API A set of rules and definitions that allows different software applications to 
communicate with each other. 

PDDL A formal language used in artificial intelligence (AI) for defining planning 
problems and actions. It provides a structured framework for specifying 
the environment (domain) and the tasks (problem) that a planner needs 
to solve. 
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Abstract 

BTs are a powerful framework for behavior control in robotics, offering modularity and 
adaptability in decision-making processes. This paper presented a comparative study of 
automatic BT generation using three approaches: PDDL-based planning, LLMs, and 
hybrid methods combining both. While PDDL planners excelled in structured task 
environments, they struggled with high-level goal abstraction and dynamic planning. 
Conversely, LLM-based methods showed promise in handling flexible, complex tasks but 
fell short in achieving optimal plans. Hybrid methods leveraged the strengths of both, 
achieving higher accuracy but at the cost of increased planning time. Through 
simulations in Isaac Sim, this paper evaluated BT accuracy rate and BT generation time 
across scenarios such as warehouse operations and object sorting. Results showed that 
PDDL-based planners performed well in simple tasks, while LLMs offered better 
adaptability in more complex tasks. Hybrid methods struck a balance between accuracy 
and flexibility, providing a robust solution for dynamic task environments. This paper 
concluded by highlighting the strengths and limitations of each method and proposed 
future directions, including reinforcement learning-based BT generation and further 
exploration of advanced PDDL versions. 

 

Key Words: BTs, PDDL, LLMs, Isaac Sim, AutoGen, ROS2,TAMP,POPF. 
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1 Introduction  

BTs are a structured methodology initially crafted for modular artificial intelligence in 
video games, which has progressively been adopted within the realm of robotics due 
to their capacity to handle increasing AI complexities [1]. In their essence, BTs facilitate 
a hierarchical organization of decision-making processes, where a multitude of simple 
tasks are structured in a tree-like formation to dictate the behavior of an agent—be it a 
robotic entity or a virtual character [2]. This configuration not only enhances modularity 
but also simplifies both the development and analytical evaluation by human operators 
and automated systems, paving the way for more dynamic and adaptive robotic 
applications. 

The automation of BT generation has become a focal point in contemporary research 
due to the traditional manual crafting of BTs requiring extensive expertise and often 
falling short in dynamic adaptability in complex scenarios. The first major approach 
involves the use of Planning Domain Definition Language (PDDL) with classical 
planners, exemplified by systems like PlanSys2. This method integrates BT generation 
and execution modules that interface with ROS2 to tackle industrial tasks, 
necessitating a predefined model of the world. However, it often struggles with 
continuous tasks that require dynamic effect analysis, highlighting a critical research 
gap. Concurrently, the potential of LLMs has been explored for generating BTs using 
natural language inputs, which specify roles, scenarios, and tasks. While LLMs offer 
innovative text generation capabilities, their performance varies across different task 
complexities, particularly in more demanding scenarios where they may underperform 
relative to classical planners. A third emerging research direction seeks to amalgamate 
classical planners and LLMs to leverage the benefits of both approaches in creating 
more versatile and effective planning solutions. 

This paper focused on assessing the comparative advantages, limitations, and 
applicability of these three methodologies in generating BTs for robots across varying 
levels of task complexity. Through methodical experiments conducted in simulation 
environments like Isaac Sim, this study evaluated scenarios including warehouse 
operations and cube sorting tasks. It contrasted the effectiveness of PDDL-based 
classical planners, such as POPF, against LLM-driven approaches and their hybrid 
implementations. Preliminary results indicated that while LLMs performed comparably 
to classical planners in simpler scenarios, they exhibited longer computation times. For 
moderately complex tasks, PDDL design presented considerable challenges, and LLM 
accuracy diminished. However, in highly complex, continuous task settings that 
required real-time adaptive planning, LLMs—particularly those augmented with 
reinforcement learning and Markov decision processes—demonstrated superior 
problem-solving efficiency. This comprehensive analysis aimed to illuminate the 
pathways towards more autonomous and flexible robotic systems through advanced 
BT generation techniques. 
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2 Background 

2.1 Introduction to BT 
A BT is a dynamic and hierarchical model used to structure the decision-making 
process in an autonomous agent, such as mobile robot or a virtual entity in a computer 
game [1,2,3]. This method is distinctly different from Finite State Machines (FSM), 
which have traditionally been used to manage simpler state transitions without the 
inherent modularity or flexibility offered by BTs [5]. Moreover, in large scale tasks 
design, BTs can benefit in programming design and dynamic interaction with 
Environment.  

The structure of BT consists of several distinct node types, including the root, control 
nodes, and leaf nodes. The leaf nodes, also known as execution nodes, are 
responsible for executing specific actions or conditions, while the non-leaf nodes, 
referred to as control flow nodes, manage the decision-making process and direct the 
flow of execution. Fig.2-1 illustrates a typical BT structure, demonstrating how these 
nodes interact hierarchically. A detailed breakdown of the node types and their 
respective functions within the BT framework is provided in Table 2-1, offering further 
insight into their operational roles. 

Table 2-1 The five nodes of a BT 

Node type Symbol Succeeds Fails Running 

Sequence → 
If all children 
succeed If one child fails 

If one child 
returns running 

Fallback ? 
If one child 
succeeds If all children fail 

If one child 
returns running 

Parallel ⇒ 
If ≥ M children 
succeed 

If > N – M 
children fail Else 

Action Shaded box Upon completion 
When impossible 
to complete 

During 
completion 

Condition White oval If true If else Never 
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The execution of a BT begins at the root node, which emits activation signals known 
as "Ticks." These Ticks propagate down the hierarchy, activating child nodes to 
execute their designated tasks. Each node, upon receiving a Tick, performs its function 
and reports its status back to the parent node: 'Running' if the task is ongoing, 
'Success' if the goal is achieved, or 'Failure' if it is not. This continual feedback allows 
the BT to dynamically adapt its actions based on real-time assessments of each node’s 
performance. 

2.2 Application Fields of BTs 
In this section, typical applications of BTs are discussed. In general, BTs can help 
agent behavior execution and robotics area. 

2.2.1 Game AI 

In [6] BTs were first been using in field of NPC Game, where the NPC’s behavior is 
predefined in BT structure. Over the past decade, BTs have achieved remarkable 
success in various types of video games, particularly in real-time strategy (RTS) games, 
first-person shooters (FPS), platform games, and dialogue-based games. BTs have 
become the preferred architecture for implementing complex, intelligent behavior in 
game characters due to their modularity and flexibility.  

In real-time strategy games (RTS), BTs are used to control units that need to make 
quick decisions based on dynamic, ever-changing environments [7]. The ability of BTs 
to react fluidly to these changes allows game developers to create more lifelike, 
strategic behaviors in units that can engage in combat, gather resources, or defend 
territories. 

 

Fig. 2-1. A BT Example perfoming pick and place task. 
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In first-person shooters (FPS), BTs are employed to govern the behavior of non-
playable characters (NPCs), providing them with the capacity to adapt to player actions, 
such as seeking cover, returning fire, or engaging in tactical maneuvers [8]. This 
adaptability leads to more challenging and engaging gameplay, as NPCs can exhibit 
complex, human-like decision-making. 

In platform games, BTs are frequently used to manage the behavior of enemies and 
other in-game characters that follow predefined patterns while reacting to player 
movements [9]. For example, an enemy might patrol an area until spotting the player, 
at which point the BT activates an attack sequence or a chase, making the game feel 
more responsive and interactive. 

In dialogue-based games [1,2], BTs are highly effective in managing branching 
conversations and interactions between characters. By structuring dialogue choices 
and responses within a BT framework, game developers can create more dynamic and 
context-sensitive dialogue systems, where characters' reactions are determined not 
only by the player's choices but also by the ongoing narrative and previous interactions. 

The widespread adoption of BTs in these genres illustrates their versatility in 
enhancing the complexity and intelligence of game AI, leading to richer and more 
immersive player experiences. 

2.2.2 Robotics 

In 2012, J. Andrew Bagnell etc. [10]. developed an integrated system for autonomous 
robotics manipulation with BT. They propose to use BTs for UAV control, the 
possibilities of BTs were first brought to robotics.  Nowadays BTs are mainly applied 
to two categories: manipulators, and mobile robots. 

In robotic manipulation, tasks such as moving the arm from an initial pose to a target 
pose, combined with controlling the gripper state, are fundamental for performing 
actions like pick-and-place. BTs play a critical role in this context by providing a 
modular and flexible framework for managing task execution. Through goal state 
definitions and condition checks, BTs ensure that complex actions are executed in a 
structured and adaptive manner, allowing for efficient control over the robot's action 
lifecycle and real-time decision-making in dynamic environments. An industry 
collaborative robots utilizing BTs include ABB YUMI were introduced in [11, 12].  

Navigation2 [13] is a great successful example utilizing BT in mobile robots. The 
framework of it is shown in Fig 2-2. BTs are employed to orchestrate key tasks such 
as global planning, local path control, and recovery actions. Each task is represented 
as a node within the BT, which allows the system to dynamically adjust its navigation 
strategy based on real-time conditions. For instance, when navigating through an 
environment, a BT might sequence the following steps: activate the global planner to 
determine a route, invoke the local planner to follow the path while avoiding obstacles, 
and, if a failure occurs (e.g., a blocked path), trigger a recovery behavior to handle the 
situation. This hierarchical structure enables the robot to navigate autonomously in 
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dynamic environments by adapting its actions based on conditions observed at runtime. 
In multi robot navigation, framework combined with BTs can complete complex mission 
by parallel node [14].  

 

Fig. 2-2 Overview of Navigation2 Design 
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3 Related Work 

This section summarizes relevant research efforts in automatic BT generation using 
both PDDL-based methods, LLM-based approaches, and hybrid systems that combine 
LLMs with classical planners such as PDDL. The discussion highlights key 
advancements, limitations, and contributions from these research areas, focusing on 
how they address the challenges in autonomous task planning for robotics. 

3.1 PDDL-based Planning 
PDDL is a formal language used to describe planning problems and actions in artificial 
intelligence (AI) and robotics. Originally developed for the AI planning community, 
PDDL provides a structured way to define the domain (i.e., the possible actions and 
objects in an environment) and the problem (i.e., the initial state, goal state, and 
constraints) [15]. It allows robotic systems to reason about the sequence of actions 
required to achieve a specific goal, enabling autonomous systems to plan complex 
tasks.  

One significant work in this area is PlanSys2, introduced in [16], which integrates 
PDDL-based planning with BTs. In this system, a classic PDDL planner is used as a 
plugin to solve the task described in PDDL, and the resulting plan is converted into a 
BT, which is then executed by the BT.CPP library. This framework ensures a flexible 
execution of tasks where plans can be dynamically adjusted as conditions change in 
the environment. 

 

Fig. 3-1 PlanSys2 Architecture 
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Another related work is the ACROBA project, which aims to create a flexible robotic 
platform for agile production environments [17]. This project integrates a PDDL solver 
within a BT-based control system to allow automatic rewriting of tasks at runtime based 
on factory or sensor inputs [17]. The task planner is designed to provide a user-friendly 
interface that allows for quick reconfiguration of robotic cells, making the system 
adaptable to different industrial scenarios. PDDL is used to optimize or automate task 
and process designs, and the resulting plans are executed through a modular BT 
system that interacts with various ROS2 components. 

SkiROS2 further extends the use of PDDL-based planning in robot control, providing 
a skill-based architecture that combines PDDL and BTs to execute complex tasks 
autonomously [16]. In SkiROS2, task-level planning is done using PDDL, and the plans 
are translated into extended BTs (eBTs) to enhance modularity and allow fast 
adaptation to change in the environment. This hybrid control structure is particularly 
useful for skill-based tasks in industrial robotics, where actions need to be dynamically 
adjusted based on sensor input or changes in the workspace.  

Furthermore, hierarchical planning approaches have emerged to address the 
challenge of scaling PDDL in complex tasks. One example is the work by Lu et al. [18], 
which focuses on hierarchical extraction, planning, and BT process control using 
historical trajectory data. The proposed system extracts high-level operators from past 
planning trajectories, optimizing the planning process by reducing the search space 
and time. This method leverages PDDL to define the planning problem and uses BTs 
for task execution, ensuring that the system can handle real-time changes and task 
failures by replanning at different hierarchical levels. The integration of causal analysis 
in the PDDL planning process ensures that contradictions in operator ordering are 
minimized, enhancing the system's robustness. 

3.2 LLM-Based Planning 
While PDDL-based planning provides a structured and formalized approach to task 
generation and execution, its limitations become apparent in dynamic environments 
where continuous re-planning and adaptability are required. This challenge has led to 
the exploration of LLMs as an alternative or complementary approach for BT 
generation. Unlike PDDL, which relies on predefined domain models and explicit action 
descriptions, LLMs leverage vast amounts of data and NLP capabilities to generate 
task plans in a more flexible and adaptive manner [19]. 

Recent studies have explored the potential of LLMs for planning and BT generation in 
robotics and AI applications. One such area of research involves using LLMs to convert 
human-provided task descriptions into executable BTs. This approach allows non-
expert users to interact with robots through natural language, specifying tasks and 
goals without the need for technical knowledge of PDDL or formal planning languages. 
The LLM interprets these inputs and generates a corresponding BT structure, which 
the robot can then execute. 
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One prominent example is the LLM-BT system [20], where LLMs such as GPT are 
used to generate BTs by converting task descriptions into executable sequences. The 
system uses an LLM to translate natural language commands into BTs, which can then 
be executed by the robot. This approach has been demonstrated in complex scenarios 
such as household robotics, where a robot can receive instructions like "clean the living 
room," and the LLM generates a BT with subtasks such as "vacuum the floor" and 
"dust the furniture." The adaptability of LLMs allows for dynamic task restructuring if 
the environment changes during execution.  

Another significant advancement in LLM-based planning is the LLM-MARS framework 
[21], which integrates the Falcon 7B model to generate BTs and support human-robot 
dialogue. This system was successfully demonstrated in the Eurobot 2023 competition, 
where multi-agent systems of robots used LLM-generated BTs to perform collaborative 
tasks, such as navigating and collecting objects in dynamic environments. In this 
framework, the LLM not only generates BTs but also allows robots to engage in real-
time dialogue with human operators, explaining their actions and providing feedback. 
The question-answering feature enhances human-robot interaction, making the 
system more intuitive and adaptable to user input. 

Another important development in LLM-based planning is BTGenBot, which uses 
lightweight LLMs such as LLaMA and GPT-3.5 for generating BTs. By fine-tuning the 
models with specific datasets related to robotic tasks, BTGenBot enables efficient and 
scalable BT generation for applications like robotic manipulation and navigation. This 
research explores the deployment of compact LLMs directly on robots, making the 
system more practical for real-world usage where hardware limitations are a concern 
[22]. 

In addition, SayCan [23], a hybrid system developed by Google Robotics, utilizes LLMs 
to interpret natural language instructions and combine them with value functions that 
guide the robot’s actions based on environmental feedback. This approach enables 
robots to handle tasks with high-level goals, such as "fetch me a drink," while adapting 
to real-time environmental conditions, ensuring efficient task completion. SayCan 
bridges the gap between LLM-driven task interpretation and traditional robotic control 
systems.  

3.3 Hybrid Approaches Combining PDDL and LLMs 
Planning 

LLMs, while proficient in interpreting natural language and generating high-level task 
plans, struggle with the functional competence required for complex robotic task 
planning. LLMs often fail to account for long-term dependencies, task constraints, and 
physical feasibility [24], leading to incomplete or non-executable plans. In robotic 
systems, particularly in Task and Motion Planning (TAMP), these limitations are 
problematic, as the robots must deal with real-world constraints such as collision 
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avoidance and dynamic environmental changes. To address these challenges, hybrid 
approaches that combine LLMs with classical planners like PDDL have emerged. 
These hybrid systems allow LLMs to handle the flexibility and natural language 
interface while PDDL planners ensure precise, executable, and feasible task plans.  

NL2Plan [27] is a hybrid framework where LLMs convert high-level, natural language 
task descriptions into PDDL specifications. The PDDL planner then refines these 
specifications into structured and feasible task plans, ensuring that dependencies and 
constraints are respected. By combining LLMs for task interpretation and PDDL for 
execution precision, NL2Plan addresses LLMs' limitations in handling complex, long-
term tasks, improving planning accuracy and task feasibility.  

LLM+P [24] takes a similar hybrid approach, using LLMs to translate user-provided 
natural language commands into PDDL specifications. The PDDL planner refines the 
task plan and ensures that it aligns with the robot's operational constraints. This hybrid 
system enhances the user interface, making task specification easier and more flexible, 
while ensuring that the plans are executable in real-world environments. LLM+P 
successfully bridges the gap between natural language task input and structured task 
execution.  

LLM3 [26] extends the hybrid approach by integrating LLMs into the Task and Motion 
Planning (TAMP) framework. Unlike traditional TAMP methods, LLM3 uses LLMs to 
propose both symbolic actions and continuous motion parameters. The unique 
contribution of LLM3 lies in its ability to incorporate feedback from motion planning 
failures, refining task proposals iteratively based on this feedback. This allows the 
system to dynamically adjust plans to avoid motion failures, such as collisions or 
unreachable positions. In simulations, LLM3 demonstrated significant improvements 
in task success rates and planning efficiency, particularly in complex tasks like box-
packing, where the system needed to navigate dynamic obstacles and refine its 
approach based on real-time motion constraints.  

PDDLEGO [28] introduces a hybrid approach designed for partially-observed 
environments, where the robot does not initially have complete information about its 
surroundings. In PDDLEGO, LLMs are used to iteratively generate a PDDL problem 
file as the environment is explored, gradually refining the task plan as more information 
is gathered. This iterative planning approach ensures that the robot can adapt its 
actions based on new observations, significantly improving planning efficiency in 
dynamic, partially known environments. 
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4 Experiments 

4.1 Simulation Scenarios 
In prior research, task planning performance has often been evaluated using goal 
sequences at mid-level complexity. However, the performance of classical planners 
and LLM-based models on higher-level, more abstract goals remains underexplored 
[24, 26, 27]. Moreover, there has been limited investigation into how these models 
cope with noisy environments or NL inputs. To bridge these gaps, this paper proposed 
two baseline tasks designed to test three methods, including classical (PDDL-based) 
planners, LLM-based and hybrid planners’ methods across varying levels of task 
complexity and under noisy conditions. These experiments offered insight into how 
well each approach handles high-level planning challenges and environmental 
uncertainty. Both Simulations are setting with Isaac Sim, which provide well 
communication with ROS2.  

4.1.1 Warehouse Task 

In this experiment, a robot carter and 18 waypoints are placed within a simulated 
warehouse environment. Various objects are located at each waypoint. The carter 
must perform patrol and shot action with expected waypoints sequence. The tasks are 
categorized into low-level, mid-level, and high-level settings, with detailed description 
in Table 4-1 below. The scenario simulation is shown in Fig. 4-1. 

 

Fig. 4-1 Simulation of Warehouse in Isaac Sim (a): side view (b): top view 

• Low-level tasks: in these tasks, the waypoints are unconnected, meaning the 
carter can move directly from starting point to the target waypoint. The planning 
challenge at the level is minimal as no route optimization is required, but only 
give the expected action sequence in BT. 

• Mid-level tasks: at this level, a single bidirectional connection is predefined 
between waypoints. The carter must traverse these connections to patrol and 
perform actions at the expected waypoints. The planning challenge at the level 
is performing a path in predefined connection.  
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• High-level tasks: in this case, the carter must complete the patrol and shot 
action sequence across multiple waypoints with the minimum cost. Here, the 
planner must optimize the path, solving for the shortest route while completing 
the necessary actions in the correct sequence.  

• Domain with action variant: in this task, different action variant is considered: 
types, predicates and also the surrogate actions with different effects. The goal 
of this experiment is to evaluate which planning approach can maintain optimal 
performance despite the noise. The expectation is that some planners, 
particularly LLM-based models, may be more susceptible to environmental 
noise due to their reliance on natural language interpretation, while classical 
planners (PDDL-based) or hybrid models could potentially handle the variant 
action more effectively by leveraging structured reasoning. The example of 
Skills variant is listed in table 4-3. 

Table 4-1 Overview for Warehouse Task 

Warehouse Task 
Complexity 

Tests Test Description Noise/Changes 

Low level 
tasks:  

Simple Test1 Partial waypoints are 
patrolled. 

None 

 Test2 Partial waypoints are 
patrolled and shot 

None 

 Test3 All waypoints are not 
patrolled and shot 

None 

Middle level 
tasks 

Moderate Test1 Partial waypoints are 
patrolled. 

None 

 Test2 Partial waypoints are 
patrolled and shot 

None 

 Test3 All waypoints are not 
patrolled and shot 

None 

High level 
tasks 

Complex Test1 Partial waypoints are 
patrolled. 

None 

 Test2 Partial waypoints are 
patrolled and shot 

None 

 Test3 All waypoints are not 
patrolled and shot 

None 

Domain 
with noise 
tasks 

Varies Test1(Type 
Noise) 

Variant are types (Add 2 
irrelevant waypoints) 

2 extra waypoints 

 Test2(Action 
Noise) 

Variant are actions (Add 
2 surrogate actions with 
different effects) 

2 extra actions 

 Test3(Predicate 
Noise) 

Variant are predicates 
(Add 2 irrelevant 
predicates) 

Predicate mismatch 
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The Illustration of different scenario setting are shown as Fig.4-2. 

 

 

Fig. 4-2 Scenario Setting for 4 Tasks in Isaac Sim. (a) 18Waypoints have no connection. (b) Every two 
waypoints are bidirectional connected. (c) Multi connections between waypoints. (d) Keep connection 

setting as (b) but with variant inputs. 

The available skills in ros2 for scenario warehouse are shown in Table 4-2.  

Table 4-2 Skill set in Warehouse 

Skill’s name Skilll Description Properties 
askCharge  Carter will check battery state. It’s been 

executed when state is low.   
input None 

output Wp 

charging Carter will be charged at waypoint: 
wp_charge 

input Wp 

output None 

move Carter can move from original waypoint to 
target waypoint. 

input Wp1; Wp2 

output None 

patrol Carter can do patrol at waypoint. input Wp 

output None 
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shot Carter can shot the objects at waypoints, 
the pictures will be analyzed later. 

input Wp 

output None 

 

Table 4-3 Skills example variant in Warehouse 

Skill’s name Skilll Description Properties 
move Carter can move from original waypoint to 

target waypoint. 
input Wp1; Wp2 

output None 

move_variant Carter can move from original waypoint to 
target waypoint without limitation to 
waypoint connection 

input Wp 

output None 

patrol Carter can do patrol at waypoint input Wp 

output None 

patrol_variant Carter can do patrol at waypoint in specific 
behavior 

input Wp 

output None 

 

4.1.2 Objects Sorting Task 

The Object Sorting Task is a comprehensive evaluation scenario designed to test both 
path planning and task planning across varying levels of complexity. Object sorting, a 
common task in industrial robotics [29], requires precise handling of both object 
manipulation and spatial arrangement. This task provides an ideal benchmark for 
comparing the performance of PDDL-based, LLM-based, and hybrid planning methods 
under increasingly complex conditions. In this experiment, a 7-DOF Panda robot was 
been choosen to sort cubes [30], each represented by different colors to simulate 
distinct objects. Initially, the cubes are randomly scattered in the environment, and the 
robot's task is to sort them into designated target regions based on their color. The 
simulation scenario is shown in Fig.4-3. 



 22 

 

Fig. 4-3 Simulation of Objects Sorting in Isaac Sim (a): side view, (b): top-down view 

Four task configurations are defined, each simulating different levels of complexity and 
behavior. The purpose of this task is to evaluate the planners’ ability to manage 
increasingly complex goals, from simple cube sorting to more challenging 
configurations that require dynamic re-planning. Notably, this experiment does not 
incorporate noise (as in the warehouse task), focusing instead on assessing how well 
each method handles varying goal levels. One key aspect of the task setup is the 
inclusion of both 2D and 3D sorting, where cubes may be in either an accessible or 
inaccessible state. The latter adds complexity, as cubes stacked underneath others 
require reasoning about spatial constraints and action dependencies.  

• Low-level tasks: In these tasks, the planners are tested on simple goal 
execution. The planner is given a predefined sequence in which to order the 
cubes, and it must generate the appropriate action sequence. The challenge in 
this task is minimal, focusing on basic object ordering and pick-and-place 
operations. 

• Middle-level tasks: These tasks increase in complexity by requiring the planner 
to stack cubes. Instead of a simple positioning goal (object_at target_position), 
the task now involves sorting three cubes into a stack. The planner must 
generate an entire sequence of actions to correctly stack the cubes in the 
desired order. 

• High-level tasks: In this level, the task becomes significantly more complex by 
introducing color priority. The planner is required to sort cubes based on color 
precedence, dynamically adjusting its plan when cubes of the highest priority 
are inaccessible. For instance, if red cubes are initially blocked by other cubes, 
the planner must re-prioritize and sort blue or green cubes, returning to red once 
they become accessible again. This scenario demands continuous task re-
planning and effective interaction with a dynamic environment, presenting a 
significant challenge for classical planners, particularly those based on PDDL 
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2.1, which may struggle with real-time re-planning and handling of non-static 
conditions. 

Across these task levels, this paper aims to identify the strengths and limitations of 
each planning approach in handling increasingly complex and dynamic goals. The 
overview of task setting is shown at Table 4-3.  For example, in Fig.4-4. The planner 
should plan a BT to execute the sorting behavior as sorting stacks (from stack1 to 
stack9. Panda needs sort all 3 cubes (from top cube to bottom cube) in one stack, then 
move to next stack, until all stacks are sorted.) As the main goal, The stacks sequence 
are defined, but the sub goal sequence is the part the planner needs to solve. 

Table 4-4 Overview of Objects Sorting Tasks 

Objects Sorting Task Complexity Tests Test Description 
Low level tasks:  Simple Test1 Cube order without specific connections 

 Test2 Cube order with specific connection(mode 1) 

Middle level 
tasks 

Moderate Test1 s1*,s2,s3,s4,s5,s6,s7,s8,s9 

 Test2 s9,s6,s3,s2,s5,s8,s7,s4,s1 

 Test3 s1,s4,s7,s8,s9,s6,s3,s2,s5 

High level tasks Complex Test1 Color priority: Red, Blue, Green 

 Test2 Color priority: Blue, Green, Red 

 Test3 Color priority: Green, Red, Blue 

 

The available skill set is shown at Table 4-4. 

Table 4-5 Skill set in Objects Sorting Scenario 

Skill’s name Skilll Description Properties 
setScene Add all dynamic objects to moveit2, which 

helps generate trajectories to skill: move  
input case 

output None 

removeScene After one workflow finishes, the scene 
should be removed 

input case 

output None 

move Manipulator can move end effector from 
original pose to target pose 

input Pose  

output None 

pick Manipulator will close the gripper, touch the 
object, then hold it. 

input object 

output None 

isGripperOpen The Manipulator will check the state of the 
gripper. 

input None 

output None 
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place Manipulator will loose the gripper. input object 

output None 

 

 

Fig. 4-4 The illustration of one example for middle level task 

4.2 Experiment with PDDL-based planner 
For the execution of the testing scenarios, PlanSys2 was chosen over other 
frameworks like SkiROS2 [31, 32]. Several key factors motivated this decision, 
particularly in the context of our experimental objectives. PlanSys2 directly translates 
PDDL-generated plans from the POPF planner into executable BTs via the 
BT_executor, enabling efficient, automated testing without manual intervention. This 
seamless workflow contrasts with SkiROS2, which requires more configuration for its 
extended BTs (eBTs) and modular skills, adding unnecessary complexity for our task-
oriented study. While SkiROS2 excels in industrial applications with its skill-based 
control, PlanSys2 is better suited for task planning, especially in experiments where 
automatic BT generation and execution are essential. PlanSys2 also simplifies the 
developer workflow by automating the planning-to-execution pipeline; developers only 
need to define PDDL domain and problem files, and the system handles the rest. In 
contrast, SkiROS2 demands more setup, making it less practical for our needs. Given 
our focus on testing the performance of classical and LLM-based planners in automatic 
BT generation, PlanSys2’s robust PDDL integration and simplified execution process 
made it the optimal choice for our experiments. 

The following Fig.4-5 demonstrate the architecture of PlanSys2. In this framework, the 
input consists of pairs of PDDL files, including domain.pddl and problem.pddl files. 
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These files are processed by the PlanSys2 system's POPF planner to generate a plan 
for each application, where the plan represents a sequence of actions. The 
executor_client then automatically translates these generated plans into BT. Next, the 
BT_executor executes the BTs by calling each atomic action. The actions can 
communicate with either a simulation platform, such as Isaac Sim, or a real-world 
environment to carry out the necessary tasks. During execution, various skills are 
invoked, such as warehouse skills (e.g., setScene, move, place, pick) and object 
sorting skills (e.g., askCharging, move, patrol). These operations are logged in real-
time by the Log Monitor, which records all execution data into a database. Finally, in 
the evaluation phase, the results are collected and assessed based on two primary 
metrics: BT Accuracy Rate (how accurately the tasks are performed) and BT 
Generation Time (how quickly the BTs are created). BT Generation Time consists of 
two parts: the time taken to generate the plan and the time taken to translate the plan 
into a BT. The evaluation process is only been discussed here once, because all the 
frameworks following share same structure. This entire workflow is highly automated, 
streamlining the planning-to-execution pipeline for developers and eliminating the need 
for manual intervention, thereby improving efficiency. 

 

Fig. 4-5 Architecture of PlanSys2 for experiments scenarios 
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4.3 Experiment with LLMs 
Based on the analysis in Section 3.2, numerous frameworks have been proposed by 
researchers that leverage LLMs as planners for automatic BT generation. Through 
comparative experiments, it has been observed that models such as GPT-4 and 
Claude 3.5 exhibit high accuracy in generating BTs from natural language descriptions. 
Fine-tuning smaller models with specialized datasets has proven effective for 
translation tasks; however, their performance in reasoning tasks remains limited. Given 
the higher reasoning capability required for complex planning, GPT-4o was choosen 
and Claude 3.5 as the primary LLM-based planners for our experiments. Other 
supplementary techniques, such as graph search algorithms, are beyond the scope of 
this study and are not included in our evaluation. 

In this paper the AutoGen framework was chosen [33], which particularly in multi-agent 
environments, where a complex task is decomposed into smaller sub-tasks that can 
be handled by individual agents. This approach was been named as LLM2BT, it 
ensures that each agent is responsible for a specific task within the overall system, 
increasing the scalability and efficiency of task execution. The input to the planner 
consists of a scenario description provided in natural language, detailing the required 
tasks and conditions. The planner then generates a BT that satisfies the given 
constraints. 

To ensure the correctness and feasibility of the generated BT, the BT_executor 
performs semantic validation before task execution. The success rate of the generated 
BT is evaluated through simulations in Isaac Sim, which allows for rigorous testing of 
the planner’s performance under various task complexities and environmental 
conditions. The overall architecture is illustrated in the figure below, which outlines the 
flow from NL input to BT generation, semantic validation, and execution in the 
simulation environment. This structured approach enables us to systematically assess 
the performance of LLM-based planners in generating and executing BTs, focusing on 
both task accuracy and adaptability in dynamic environments. 
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Fig. 4-6 Architecture of LLMBT 

The framework depicted in the Fig. 4-6 operates using three agents to handle the 
various stages of BT generation. Each agent is assigned a specific role in the workflow, 
from scenario identification to task execution and BT generation. 

1. agent_scenario: This agent is responsible for retrieving an appropriate scenario 
description from a predefined database, based on the task at hand. It compiles 
necessary information such as executable skill sets, skill attributes, and requirements 
specific to the task. This data forms the foundation for the next step and is passed 
forward to the subsequent agent. 

2. agent_task: This agent receives input from either the user or a pre-defined task set. 
It processes this input and aligns it with the task requirements obtained from the 
scenario. The output of agent_scenario and agent_task is combined to generate a 
cohesive task description that includes the needed actions and skills, which are then 
passed to the agent_BTGen for BT generation. 
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3.agent_BTGen: This agent is guided by a prompt-based role definition (Prompt_Role) 
and is tasked with generating the actual BT. The role prompt specifies the format of 
the BT, including details such as whether to use sub-trees and other structural 
requirements. The textual information from the previous agents is processed by 
agent_BTGen, which translates it into a structured BT ready for execution. 

4. BT_executor: Before the BT is executed, the BT_executor module acts as a 
validator, checking the generated BT for semantic accuracy. If any errors are identified 
during this validation process, feedback is provided to agent_BTGen. If necessary, a 
replan process is initiated to correct any issues with the BT, ensuring that the final BT 
passes the initial validation. 

5. Feedback and Replanning: The feedback loop ensures that any inaccuracies in 
the generated BT are addressed by agent_BTGen. If the BT does not meet the 
required standards, agent_BTGen revises the tree until it passes the semantic check 
conducted by BT_executor. Once validated, the BT is then ready for execution across 
the series of predefined test cases (Application1, Application2, etc.). 

The framework not only ensures that BT generation is iterative, robust, and capable of 
adapting to dynamic inputs and changes in task requirements, but also presents 
several advantages over traditional methods like PlanSys2. One of the key benefits of 
this approach is the simplification of scenario description. Unlike PlanSys2, which 
relies heavily on PDDL-based domain and problem modeling, this method allows users 
to directly model the world and scenario using NL. This greatly reduces the complexity 
of the input and makes the process more accessible, as users no longer need deep 
expertise in PDDL to define tasks and environments. As a result, this approach offers 
both simplicity and adaptability, making it a more versatile solution for automatic BT 
generation compared to PlanSys2. 

4.4 Experiment with Hybrid Planners 
This section investigates two types of hybrid planners that combine the strengths of 
LLMs and classical planners, with distinct goals for each method. 

4.4.1 Hybrid_LLM2PDDL 

The first hybrid approach uses LLMs primarily for translating high-level natural 
language task descriptions into problem.pddl files, which are then solved by a classical 
planner such as POPF [34]. The aim here is to ensure that the generated BTs are 
accurate and executable, as the classical planner handles the core task planning and 
constraint resolution. By offloading the reasoning and task-solving to a traditional 
planner, this method leverages the LLM’s ability to simplify task descriptions while 
relying on proven planning algorithms to execute complex tasks with precision. This 
approach prioritizes correctness in the generated BTs by ensuring that the final plan is 
structurally sound and adheres to task constraints. 
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Fig. 4-7 Architecture of BT Generation Framework using LLM with POPF 

4.4.2 Hybrid_PDDL2LLM 

The second hybrid approach evaluates the LLM’s ability to handle task solving 
independently. In this method, the LLM is responsible for both task planning and 
execution by directly generating BTs from PDDL inputs without the involvement of a 
classical planner. This approach tests whether the reasoning capabilities of the LLM 
can be enhanced by giving it more control over the problem-solving process. The goal 
is to assess how the quality of the generated BTs is influenced by different input 
formats (NL vs. PDDL) and to determine if the LLM can handle task dependencies and 
constraints effectively. The architecture of this framework is shown as Fig.4-8. 

Through these two experiments, this paper aim to evaluate (1) the impact of input 
formats on the accuracy and feasibility of BT generation, and (2) the potential for LLMs 
to enhance reasoning and adaptivity in task planning when directly responsible for task 
execution. The first approach prioritizes correctness and reliability by incorporating 
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classical planners, while the second aims to explore the LLM’s full reasoning potential 
in dynamic and complex environments. 

 

Fig. 4-8 Architecture of BT Generation Framework of second hybrid approach 
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5 Evaluation 

5.1 Overview of Evaluation Criteria 
To effectively compare the performance of various planners, two key metrics are 
selected: BT Accuracy Rate and BT Generation Time. These metrics evaluate the 
planners’ abilities in terms of accuracy and efficiency across tasks of varying 
complexity [33]. It is important to note that BT Accuracy Rate carries more weight than 
BT Generation Time, emphasizing the prioritization of accuracy in task execution, 
particularly in complex or critical scenarios. 

BT Accuracy Rate measures the planner’s ability to execute tasks accurately and 
consistently at different levels of complexity. It reflects how well the planner handles 
goal definitions, environmental challenges, and dynamic conditions. In real-world 
applications such as autonomous driving or robotics, where accuracy is critical, a high 
BT Accuracy Rate indicates the planner’s robustness in managing intricate and 
unpredictable scenarios. Planners that excel in this metric demonstrate their ability to 
consistently generate BTs that lead to correct task execution, even in dynamic or 
complex environments 

BT Generation Time assesses the time taken by the planner to generate a valid BT 
from the given task description. This metric is particularly crucial for real-time 
applications where delays in planning can significantly impact task execution and 
recovery from unexpected changes. Although speed is important, especially in time-
sensitive environments, accuracy often takes precedence. A longer BT Generation 
Time may be acceptable if it ensures correct task execution. However, in dynamic 
systems such as autonomous vehicles or real-time robotic control, minimizing BT 
Generation Time is also critical for maintaining operational efficiency and 
responsiveness. 
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5.2 Evaluation of PDDL-based Planners 
The performance of PDDL-based planners, in this paper PlanSys2 was chosen, is 
evaluated across two scenarios: Warehouse and Object Sorting. These scenarios 
encompass a range of task complexities, from simple to high-level, allowing for a 
comprehensive evaluation of the planners’ strengths and limitations. BT Accuracy Rate 
and BT Generation Time are the key metrics considered for this evaluation. 

BT Accuracy Rate: 

In the Warehouse scenario, PlanSys2 consistently achieves a 100% BT accuracy rate 
across all levels of task complexity—simple, moderate, and complex, as long as the 
PDDL domain and problem definitions are correctly set up(The results are shown in 
Fig.5-2). This highlights the strength of structured, logic-based planning systems in 
tasks where the environment and task constraints are clearly defined. For example, in 
simple tasks where the carter must follow a predefined sequence of waypoints, the 
success rate remains perfect, as PlanSys2 reliably executes the plan without deviation. 
Similarly, in mid-level tasks where the waypoints are connected bidirectionally, the 
planner accurately traverses the expected path. However, PlanSys2's limitations are 
exposed when the environment contains multiple actions or skills with the same name 
but different effects. In these cases, PlanSys2 tends to select the action that results in 
the least state variation, even if it is not the optimal choice. For instance, when multiple 
move actions (in Fig.5-1) with identical function but differing effects are present, the 
planner may incorrectly prioritize the action that minimally affects the system state, 
rather than the one that is required to meet the task objectives. This behavior is 
particularly problematic in tasks where the planner must select actions based on 
nuanced conditions, such as differentiating between similar skills that produce different 
outcomes. 

 

Fig. 5-1 Example of multiple move actions (a) variant_move, (b)standard move 
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Fig. 5-2 BT Accuracy Rate in warehouse experiment 

 

Fig. 5-3 BT Accuracy Rate in Objects Sorting experiment 

In the Objects Sorting scenario, which tests the planners’ ability to handle more 
abstract and dynamic goals, PlanSys2 excels at simple tasks where the objectives and 
action sequences are explicitly defined. For example, when the task involves sorting 
cubes according to a predefined sequence (giving cube’s ID as goal), PlanSys2 
successfully completes the task with a 100% success rate, given that the task is fully 
specified in the problem file(The results are shown in Fig.5-3). 
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However, as the complexity of the task increases, PlanSys2 struggles to maintain its 
performance. In mid-level tasks that require the planner to solve for stack 
configurations without specific goal details (e.g., the task simply specifies that the 
cubes must be stacked in a certain order), PlanSys2 begins to show limitations. The 
most significant challenge arises in high-level goal in complex tasks, where the sorting 
must follow color priority (e.g., sort red cubes first, followed by blue, then green). These 
tasks require dynamic re-planning and goal adjustment based on the current state of 
the environment, which traditional PDDL-based planners are not designed to handle. 
Without additional skills or explicit action definitions, PlanSys2 is unable to solve these 
high-level tasks, leading to failure in such cases. 

 

BT Generation Time: 

In terms of Planning Time, PlanSys2 performs efficiently in simple and mid-level tasks, 
especially when the problem is well-structured, and the goal is clearly defined. In these 
cases, the planner can quickly generate a valid plan without significant computational 
overhead. For example, in the Warehouse scenario, when the task is straightforward 
(e.g., following a predefined path with minimal waypoints), PlanSys2 generates BTs 
quickly and accurately, making it highly suitable for static environments where goals 
and constraints are known in advance. 

 

Fig. 5-4 BT Generation Time based on TEST3 in Warehouse experiment 
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Fig. 5-5 BT Generation Time in Warehouse experiment 

 

Fig. 5-6 BT Generation Time in objects sorting experiment 

However, as task complexity increases, particularly in dynamic environments, BT 
generation tends to rise due to the need for re-planning. In more complex tasks, such 
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as those involving dynamic goal re-prioritization or handling multiple action choices, 
PlanSys2 must repeatedly solve the problem, which significantly increases the 
planning time. This is especially evident in the Object Sorting scenario during the high-
level tasks, where color-priority sorting requires dynamic decision-making based on 
real-time changes in the environment. PlanSys2's inability to handle these dynamic 
requirements leads not only to failures in task success but also to increased planning 
times due to its lack of adaptive capabilities(The results of BT generation Time can be 
checked in Fig.5-5 and Fig.5-6). 

 

5.3 Evaluation of LLM-based Planners 

BT Accuracy Rate: 

In the Warehouse scenario, LLM-based planners achieved a 100% BT accuracy rate 
for both simple and moderate tasks. This indicates that, when the task complexity is 
limited, LLMs are capable of effectively reasoning through the problem space and 
generating correct plans. Their ability to translate those plans into BTs for execution 
by the corresponding system further demonstrates the strength of LLMs in structured 
tasks. For example, in tasks where the carter robot must follow a predetermined 
sequence of waypoints, the LLM accurately interprets the instructions and generates 
the appropriate action sequence. 

However, as the task complexity increases, such as in complex tasks, the Task 
Success Rate for LLM-based planners begins to decline. In high-level tasks, where the 
carter must optimize routes to minimize the number of waypoints visited, LLMs often 
fail to identify the optimal solution. For instance(the illustration path is shown at Fig.5-
7.), when multiple solution paths are available, the LLM may struggle to consistently 
select the route that minimizes waypoint traversal, even when the prompt explicitly 
emphasizes the importance of optimizing the path or provides optimal solutions as 
examples. This reveals a limitation in the LLM’s ability to perform optimal pathfinding, 
as its reasoning is not always effective in navigating multiple solution spaces. (In 
complex task, goal: patrol and shot at wp_16. The path generated by LLM is not 
minimum cost as the correct path. While patrol and shot action can be correct executed. 
The initial state of carter is wp_6. The optimum path was wp_6 -> wp_5 -> wp_4 -> 
wp_1 -> wp_17 ->wp_16. But the path generated from LLM was wp_6 -> wp_7 -> wp_8 
-> wp_9 -> wp_11 -> wp_12 -> wp_16. The passing waypoints are more than 4. 
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Fig. 5-7 Illustration of plan generated from LLMs 

Nevertheless, when variation in skills is introduced, LLMs demonstrate some ability to 
intelligently avoid incorrect skills by incorporating specific prompt instructions. By 
augmenting the goal with clear guidance or additional cues, LLMs can circumvent 
some pitfalls, such as using the wrong action, but they still fall short of producing an 
entirely accurate plan in all cases. The variability in performance becomes more 
apparent when more complex paths and decisions need to be made. 

In the Object Sorting scenario, the LLM-based planner performed similarly to PDDL-
based planners in simple tasks, achieving 100% accuracy. This success can be 
attributed to the fact that, in simple tasks, the planner only needs to reason through 
basic state transitions for actions, while the rest of the task involves simple translation 
and execution. As there are no alternative ways to complete these tasks, LLMs have 
no difficulty in generating the correct plan. 

However, as the tasks become more complex, such as in mid-level and high-level tasks, 
the LLM begins to struggle. In mid-level tasks, the LLM must reason about the 
environment, particularly how to stack cubes according to the task goals. This requires 
a more sophisticated understanding of spatial relationships and sequencing, which 
poses a challenge for LLMs. For example, in high-level tasks, where cubes must be 
sorted according to color priority while dealing with dynamic re-planning, the LLM 
achieves a BT success rate of only 29.6%. The main issue arises from the LLM’s 
difficulty in understanding and tracking the stacking dependencies of the cubes. 
Specifically, while the LLM can plan for the cubes that are immediately available (such 
as those on the top of the stack), it fails to account for the inaccessibility of cubes that 
are blocked by others. This inability to dynamically update the status of cubes based 
on their availability highlights a key limitation: the need for the LLM to grasp inter-cube 



 38 

dependencies and continuously update its understanding of the environment, akin to 
solving a Markov decision process, where the current state of the system depends on 
its previous state. 

BT Generation Time: 

In terms of BT Generation Time, LLM-based planners exhibit significantly longer 
planning times compared to PDDL-based planners like PlanSys2. This is primarily due 
to the dual processes of reasoning and translation inherent in LLM-based planning. 
The LLM must first interpret the task in NL, deduce the necessary plan, and then 
translate that plan into a BT. This adds substantial overhead to the planning process, 
particularly in more complex tasks where deeper reasoning and environmental 
understanding are required. 

In both the Warehouse and Object Sorting scenarios, the data shows that the overall 
planning time for LLM-based planners is consistently higher than for PDDL-based 
planners, especially as task complexity increases. In simple tasks, the additional time 
spent on natural language interpretation is minimal, but as the tasks grow in complexity 
(e.g., in high-level tasks that involve multiple decision points or abstract goal 
definitions), the time required to generate a valid plan increases significantly. For 
instance, in tasks where multiple waypoints or complex stacking arrangements need 
to be considered, the LLM takes longer to process the information and produce an 
executable BT. 

 

5.4 Evaluation of Hybrid Planners 

5.4.1 Hybrid_LLM2PDDL 

BT Accuracy Rate 

In this approach, LLMs are used to translate NL prompts into problem.pddl and 
domain.pddl files, while the reasoning and task-solving are handled by the PlanSys2 
classical planner. Compared to using LLMs solely for task-solving, this hybrid method 
improves BT success rates, particularly in complex tasks within the Warehouse 
scenario. The hybrid method maintains 100% accuracy in simple and mid-level tasks, 
similar to LLM-based planners, but offers notable improvements in complex tasks by 
leveraging the structured reasoning of the PDDL-based framework. 

For tasks involving action variations, this method achieves complete accuracy by 
excluding irrelevant actions through the use of prompts that emphasize the importance 
of specific actions. By translating the NL prompt into PDDL files, Hybrid_LLM2PDDL 
avoids potential pitfalls associated with action selection, ensuring that only the correct 
and relevant actions are executed. For example, in complex Warehouse tasks, where 
multiple action variations could lead to incorrect task execution, this hybrid approach 
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successfully generates valid PDDLs that exclude irrelevant actions and maintain task 
accuracy. 

However, in the Object Sorting scenario, the hybrid method struggles to generate 
accurate PDDLs for middle and complex task sets. In these cases, the LLM is unable 
to fully comprehend the spatial and dynamic complexities of cube stacking or color 
prioritization, leading to failures in generating viable plans. As a result, the BT accuracy 
in the Object Sorting scenario remains on par with that of PlanSys2, failing to achieve 
notable improvements in more complex tasks where dynamic re-planning is critical. 

BT Generation Time 

In terms of BT Generation Time, the hybrid approach in both the Warehouse and 
Object Sorting scenarios involves the combined time for both LLM-based translation 
and PlanSys2-based planning. This results in a longer overall planning time compared 
to using either planner independently, as the translation of NL prompts into PDDL adds 
an additional step to the process. From the experimental data, it is evident that LLM 
translation time consistently accounts for the majority of the planning duration, 
particularly in more complex tasks where the interpretation and translation of the task 
prompt become more computationally intensive. 

5.4.2 Hybrid_PDDL2LLM 

BT Accuracy Rate 

In this approach, LLMs do not take NL as input; instead, they receive pre-defined PDDL 
files as input to generate BTs. The purpose of this framework is to determine whether 
modifying the prompt format—from NL to PDDL—can enhance the LLM’s reasoning 
capabilities and improve task accuracy in complex scenarios. 

Experimental results demonstrate that changing the input from NL to PDDL does not 
significantly improve the LLM’s accuracy or reasoning capabilities. In fact, when fed 
PDDLs, classical planners like PlanSys2 exhibit higher accuracy in solving tasks 
compared to LLM-based reasoning. This conclusion is drawn from both the Warehouse 
and Object Sorting scenarios, where the LLM struggles to handle complex tasks based 
solely on PDDL inputs, leading to suboptimal task solutions. 

However, in the Warehouse action variation tests, adding prompt cues in the 
Prompt_Role section helps the LLM avoid potential action conflicts and select the 
correct action. This demonstrates the LLM’s ability to function effectively when 
provided with explicit guidance on action selection, though its performance still lags 
classical planners in complex, high-level tasks. 

In the Object Sorting scenario, the LLM fails to generate viable plans for middle and 
complex task sets due to its inability to design PDDLs tailored to the required task 
constraints, resulting in zero accuracy for these task sets. 
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BT Generation Time 

In terms of BT Generation Time, the planning time for this hybrid framework closely 
mirrors that of LLM2BT, with slight increases as task complexity rises. This is because 
the process of reasoning over PDDL inputs is more challenging for the LLM than 
interpreting NL prompts, leading to increased computational overhead as task difficulty 
increases. However, the LLM’s performance in terms of time efficiency remains 
consistent, albeit slower than classical PDDL-based planners like PlanSys2. 

In conclusion, Hybrid_LLM2PDDL provides significant improvements in task accuracy 
for complex tasks in the Warehouse scenario by combining the strengths of NL-based 
translation and structured PDDL reasoning, while the Hybrid_PDDL2LLM framework 
struggles to improve task-solving capabilities when relying solely on PDDL inputs. 
Despite improvements in handling action variations, the hybrid planners remain slower 
than PDDL-based approaches and are less effective in high-complexity tasks in the 
Object Sorting scenario. 



 41 

6 Conclusion and Future Work 

6.1 Conclusion 
This paper began by introducing the background of the study, highlighting the potential 
of BTs for behavior control in robotics. With increasing complexity in robotic tasks, the 
need for automatically generating BTs has garnered attention in both LLM-based and 
PDDL-based methods. However, a thorough comparative analysis of the performance 
of these two approaches remains underexplored. Additionally, the limitations of PDDL-
based task solvers, particularly in their ability to abstract complex goals and their 
sensitivity to noise, provided further motivation for this research [35]. 

To construct our experiments, the Isaac Sim simulation environment from Nvidia was 
chosen to build two test scenarios. These scenarios were designed to evaluate the 
performance of various solvers in terms of their ability to handle tasks with varying 
levels of complexity and optimal solution strategies. The results showed that: 

For simple tasks (where the goal contains explicitly defined steps), both PDDL-based 
and LLM-based planners achieved 100% accuracy. However, when multiple solutions 
were possible, the PDDL-based planner consistently found the optimal solution, while 
LLM-based planners struggled to do so, even when the prompt explicitly emphasized 
finding the best solution. 

For complex tasks (where the goal is a high-level task involving dynamic planning), 
PDDL 2.1 failed to generate a valid plan or corresponding BTs. In contrast, LLM-based 
planners could generate solutions with around 30% accuracy, using relatively simple 
modeling. This reveals the potential of LLMs in solving complex tasks with minimal 
effort, even though their reasoning capabilities are still limited compared to structured 
methods. 

6.2 Future Work 
The primary goal of this paper was to design experiments that compare the capabilities 
of PDDL-based planners and LLM-based planners across tasks with varying levels of 
complexity. While the study yielded valuable insights, many areas remain for further 
exploration. For instance, this work only tested PDDL 2.1, but there is a need to explore 
the capabilities of PDDL 3 and PDDLStream [37] in solving more complex tasks. 
Additionally, for LLMs as solvers, the current validation only checks the syntactical 
correctness of the BTs and their execution effectiveness. Further research is needed 
to develop validators that can assess the functional correctness of BTs based on task 
execution performance. 

Moreover, reinforcement learning-based BT generation techniques represent a 
promising avenue for future research [36]. Such methods could enhance the decision-
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making abilities of BTs in dynamic environments, further pushing the boundaries of 
what autonomous robots can achieve. 
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