

University of Stuttgart
Institute of Industrial Automation and
Software Engineering

 A Comparative Study of
LLM-Based and PDDL-Based

Methods for Automatic
Behavior Tree Generation

Research Project

Submitted at the University of Stuttgart by
Chuang Yan

Electromobility – Master of Science

Examiner: Prof. Dr.-Ing. Dr. h.c. Michael Weyrich

Supervisor: Yuchen Xia

Co-Supervisor: Ruichao Wu (Fraunhofer IPA)

2024-9-14

 ii

Table of Contents

Table of Contents .. ii

Table of Figures .. iv

Table of Tables .. v

Table of Abbreviations ... vi

Glossary ... vii

Abstract ... viii

1 Introduction .. 9

2 Background ... 10

2.1 Introduction to BT ... 10

2.2 Application Fields of BTs ... 11
2.2.1 Game AI .. 11
2.2.2 Robotics ... 12

3 Related Work .. 14

3.1 PDDL-based Planning ... 14

3.2 LLM-Based Planning ... 15

3.3 Hybrid Approaches Combining PDDL and LLMs Planning 16

4 Experiments .. 18

4.1 Simulation Scenarios .. 18
4.1.1 Warehouse Task .. 18
4.1.2 Objects Sorting Task .. 21

4.2 Experiment with PDDL-based planner .. 24

4.3 Experiment with LLMs .. 26

4.4 Experiment with Hybrid Planners .. 28
4.4.1 Hybrid_LLM2PDDL ... 28
4.4.2 Hybrid_PDDL2LLM .. 29

5 Evaluation ... 31

5.1 Overview of Evaluation Criteria ... 31

5.2 Evaluation of PDDL-based Planners ... 32

5.3 Evaluation of LLM-based Planners ... 36

5.4 Evaluation of Hybrid Planners ... 36
5.4.1 Hybrid_LLM2PDDL ... 38
5.4.2 Hybrid_PDDL2LLM .. 39

 iii

6 Conclusion and Future Work .. 38

6.1 Conclusion ... 41

6.2 Future Work ... 41

Bibliography ... 43

Declaration of Compliance ... 48

 iv

Table of Figures

Figure 2.1: A BT Example perfoming pick and place task 11

Figure 2.2: Overview of Navigation2 Design ... 14

Figure 3.1: PlanSys2 Architecture ... 15

Figure 4.1: Simulation of Warehouse in Isaac Sim ... 20

Figure 4.2: Scenario Setting for 4 Tasks in Isaac Sim .. 22

Figure 4.3: Simulation of Objects Sorting in Isaac Sim ... 23

Figure 4.4: The illustration of one example for middle level task 26

Figure 4.5: Architecture of PlanSys2 for experiments scenarios 27

Figure 4.6: Architecture of LLMBT ... 29

Figure 4.7: Architecture of BT Generation Framework using LLM with POPF 30

Figure 4.8: Architecture of BT Generation Framework of second hybrid approach 32

Figure 5.1: Example of multiple move actions ... 32

Figure 5.2: BT Accuracy Rate in warehouse experiment .. 33

Figure 5.3: BT Accuracy Rate in Objects Sorting experiment 34

Figure 5.4: BT Generation Time based on TEST3 in Warehouse experiment 36

Figure 5.5: BT Generation Time in Warehouse experiment 38

Figure 5.6: BT Generation Time in objects sorting experiment 38

Figure 5.7: Illustration of plan generated from LLMs ... 38

 v

Table of Tables

Table 2-1: The five nodes of a BT ... 11

Table 4-1: Overview for Warehouse Task ... 21

Table 4-2: Skill set in Warehouse .. 22

Table 4-3: Skills example variant in Warehouse ... 24

Table 4-4: Overview of Objects Sorting Tasks .. 24

Table 4-5: Skill set in Objects Sorting Scenario .. 24

 vi

Table of Abbreviations

NLP Neural Language Processing

LLM Large Language Model

GPT Generative Pre-trained Transformer

XML

NN

Extensible Markup Language

Neural Networks

API Application Programming Interface

PDDL Planning Domain Definition Language

RL Reinforcement Learning

BT Behavior Tree

ROS2 Robot Operating System 2

FSM Finite State Machine

PDDL2.1 Planning Domain Definition Language Version 2.1

PDDLStream Planning Domain Definition Language with Stream Integration

TAMP Task and Motion Planning

POPF Partial-Order Planning with Forward Search

 vii

Glossary

XML A flexible text format used to create structured documents by defining a
set of rules for encoding documents in a format that is both human-
readable and machine-readable.

NLP A process or technique by applying computer techniques to analyze and
synthesize natural language and speech

API A set of rules and definitions that allows different software applications to
communicate with each other.

PDDL A formal language used in artificial intelligence (AI) for defining planning
problems and actions. It provides a structured framework for specifying
the environment (domain) and the tasks (problem) that a planner needs
to solve.

viii

Abstract

BTs are a powerful framework for behavior control in robotics, offering modularity and
adaptability in decision-making processes. This paper presented a comparative study of
automatic BT generation using three approaches: PDDL-based planning, LLMs, and
hybrid methods combining both. While PDDL planners excelled in structured task
environments, they struggled with high-level goal abstraction and dynamic planning.
Conversely, LLM-based methods showed promise in handling flexible, complex tasks but
fell short in achieving optimal plans. Hybrid methods leveraged the strengths of both,
achieving higher accuracy but at the cost of increased planning time. Through
simulations in Isaac Sim, this paper evaluated BT accuracy rate and BT generation time
across scenarios such as warehouse operations and object sorting. Results showed that
PDDL-based planners performed well in simple tasks, while LLMs offered better
adaptability in more complex tasks. Hybrid methods struck a balance between accuracy
and flexibility, providing a robust solution for dynamic task environments. This paper
concluded by highlighting the strengths and limitations of each method and proposed
future directions, including reinforcement learning-based BT generation and further
exploration of advanced PDDL versions.

Key Words: BTs, PDDL, LLMs, Isaac Sim, AutoGen, ROS2,TAMP,POPF.

9

1 Introduction

BTs are a structured methodology initially crafted for modular artificial intelligence in
video games, which has progressively been adopted within the realm of robotics due
to their capacity to handle increasing AI complexities [1]. In their essence, BTs facilitate
a hierarchical organization of decision-making processes, where a multitude of simple
tasks are structured in a tree-like formation to dictate the behavior of an agent—be it a
robotic entity or a virtual character [2]. This configuration not only enhances modularity
but also simplifies both the development and analytical evaluation by human operators
and automated systems, paving the way for more dynamic and adaptive robotic
applications.

The automation of BT generation has become a focal point in contemporary research
due to the traditional manual crafting of BTs requiring extensive expertise and often
falling short in dynamic adaptability in complex scenarios. The first major approach
involves the use of Planning Domain Definition Language (PDDL) with classical
planners, exemplified by systems like PlanSys2. This method integrates BT generation
and execution modules that interface with ROS2 to tackle industrial tasks,
necessitating a predefined model of the world. However, it often struggles with
continuous tasks that require dynamic effect analysis, highlighting a critical research
gap. Concurrently, the potential of LLMs has been explored for generating BTs using
natural language inputs, which specify roles, scenarios, and tasks. While LLMs offer
innovative text generation capabilities, their performance varies across different task
complexities, particularly in more demanding scenarios where they may underperform
relative to classical planners. A third emerging research direction seeks to amalgamate
classical planners and LLMs to leverage the benefits of both approaches in creating
more versatile and effective planning solutions.

This paper focused on assessing the comparative advantages, limitations, and
applicability of these three methodologies in generating BTs for robots across varying
levels of task complexity. Through methodical experiments conducted in simulation
environments like Isaac Sim, this study evaluated scenarios including warehouse
operations and cube sorting tasks. It contrasted the effectiveness of PDDL-based
classical planners, such as POPF, against LLM-driven approaches and their hybrid
implementations. Preliminary results indicated that while LLMs performed comparably
to classical planners in simpler scenarios, they exhibited longer computation times. For
moderately complex tasks, PDDL design presented considerable challenges, and LLM
accuracy diminished. However, in highly complex, continuous task settings that
required real-time adaptive planning, LLMs—particularly those augmented with
reinforcement learning and Markov decision processes—demonstrated superior
problem-solving efficiency. This comprehensive analysis aimed to illuminate the
pathways towards more autonomous and flexible robotic systems through advanced
BT generation techniques.

 10

2 Background

2.1 Introduction to BT
A BT is a dynamic and hierarchical model used to structure the decision-making
process in an autonomous agent, such as mobile robot or a virtual entity in a computer
game [1,2,3]. This method is distinctly different from Finite State Machines (FSM),
which have traditionally been used to manage simpler state transitions without the
inherent modularity or flexibility offered by BTs [5]. Moreover, in large scale tasks
design, BTs can benefit in programming design and dynamic interaction with
Environment.

The structure of BT consists of several distinct node types, including the root, control
nodes, and leaf nodes. The leaf nodes, also known as execution nodes, are
responsible for executing specific actions or conditions, while the non-leaf nodes,
referred to as control flow nodes, manage the decision-making process and direct the
flow of execution. Fig.2-1 illustrates a typical BT structure, demonstrating how these
nodes interact hierarchically. A detailed breakdown of the node types and their
respective functions within the BT framework is provided in Table 2-1, offering further
insight into their operational roles.

Table 2-1 The five nodes of a BT

Node type Symbol Succeeds Fails Running

Sequence →
If all children
succeed If one child fails

If one child
returns running

Fallback ?
If one child
succeeds If all children fail

If one child
returns running

Parallel ⇒
If ≥ M children
succeed

If > N – M
children fail Else

Action Shaded box Upon completion
When impossible
to complete

During
completion

Condition White oval If true If else Never

 11

The execution of a BT begins at the root node, which emits activation signals known
as "Ticks." These Ticks propagate down the hierarchy, activating child nodes to
execute their designated tasks. Each node, upon receiving a Tick, performs its function
and reports its status back to the parent node: 'Running' if the task is ongoing,
'Success' if the goal is achieved, or 'Failure' if it is not. This continual feedback allows
the BT to dynamically adapt its actions based on real-time assessments of each node’s
performance.

2.2 Application Fields of BTs
In this section, typical applications of BTs are discussed. In general, BTs can help
agent behavior execution and robotics area.

2.2.1 Game AI

In [6] BTs were first been using in field of NPC Game, where the NPC’s behavior is
predefined in BT structure. Over the past decade, BTs have achieved remarkable
success in various types of video games, particularly in real-time strategy (RTS) games,
first-person shooters (FPS), platform games, and dialogue-based games. BTs have
become the preferred architecture for implementing complex, intelligent behavior in
game characters due to their modularity and flexibility.

In real-time strategy games (RTS), BTs are used to control units that need to make
quick decisions based on dynamic, ever-changing environments [7]. The ability of BTs
to react fluidly to these changes allows game developers to create more lifelike,
strategic behaviors in units that can engage in combat, gather resources, or defend
territories.

Fig. 2-1. A BT Example perfoming pick and place task.

 12

In first-person shooters (FPS), BTs are employed to govern the behavior of non-
playable characters (NPCs), providing them with the capacity to adapt to player actions,
such as seeking cover, returning fire, or engaging in tactical maneuvers [8]. This
adaptability leads to more challenging and engaging gameplay, as NPCs can exhibit
complex, human-like decision-making.

In platform games, BTs are frequently used to manage the behavior of enemies and
other in-game characters that follow predefined patterns while reacting to player
movements [9]. For example, an enemy might patrol an area until spotting the player,
at which point the BT activates an attack sequence or a chase, making the game feel
more responsive and interactive.

In dialogue-based games [1,2], BTs are highly effective in managing branching
conversations and interactions between characters. By structuring dialogue choices
and responses within a BT framework, game developers can create more dynamic and
context-sensitive dialogue systems, where characters' reactions are determined not
only by the player's choices but also by the ongoing narrative and previous interactions.

The widespread adoption of BTs in these genres illustrates their versatility in
enhancing the complexity and intelligence of game AI, leading to richer and more
immersive player experiences.

2.2.2 Robotics

In 2012, J. Andrew Bagnell etc. [10]. developed an integrated system for autonomous
robotics manipulation with BT. They propose to use BTs for UAV control, the
possibilities of BTs were first brought to robotics. Nowadays BTs are mainly applied
to two categories: manipulators, and mobile robots.

In robotic manipulation, tasks such as moving the arm from an initial pose to a target
pose, combined with controlling the gripper state, are fundamental for performing
actions like pick-and-place. BTs play a critical role in this context by providing a
modular and flexible framework for managing task execution. Through goal state
definitions and condition checks, BTs ensure that complex actions are executed in a
structured and adaptive manner, allowing for efficient control over the robot's action
lifecycle and real-time decision-making in dynamic environments. An industry
collaborative robots utilizing BTs include ABB YUMI were introduced in [11, 12].

Navigation2 [13] is a great successful example utilizing BT in mobile robots. The
framework of it is shown in Fig 2-2. BTs are employed to orchestrate key tasks such
as global planning, local path control, and recovery actions. Each task is represented
as a node within the BT, which allows the system to dynamically adjust its navigation
strategy based on real-time conditions. For instance, when navigating through an
environment, a BT might sequence the following steps: activate the global planner to
determine a route, invoke the local planner to follow the path while avoiding obstacles,
and, if a failure occurs (e.g., a blocked path), trigger a recovery behavior to handle the
situation. This hierarchical structure enables the robot to navigate autonomously in

 13

dynamic environments by adapting its actions based on conditions observed at runtime.
In multi robot navigation, framework combined with BTs can complete complex mission
by parallel node [14].

Fig. 2-2 Overview of Navigation2 Design

 14

3 Related Work

This section summarizes relevant research efforts in automatic BT generation using
both PDDL-based methods, LLM-based approaches, and hybrid systems that combine
LLMs with classical planners such as PDDL. The discussion highlights key
advancements, limitations, and contributions from these research areas, focusing on
how they address the challenges in autonomous task planning for robotics.

3.1 PDDL-based Planning
PDDL is a formal language used to describe planning problems and actions in artificial
intelligence (AI) and robotics. Originally developed for the AI planning community,
PDDL provides a structured way to define the domain (i.e., the possible actions and
objects in an environment) and the problem (i.e., the initial state, goal state, and
constraints) [15]. It allows robotic systems to reason about the sequence of actions
required to achieve a specific goal, enabling autonomous systems to plan complex
tasks.

One significant work in this area is PlanSys2, introduced in [16], which integrates
PDDL-based planning with BTs. In this system, a classic PDDL planner is used as a
plugin to solve the task described in PDDL, and the resulting plan is converted into a
BT, which is then executed by the BT.CPP library. This framework ensures a flexible
execution of tasks where plans can be dynamically adjusted as conditions change in
the environment.

Fig. 3-1 PlanSys2 Architecture

 15

Another related work is the ACROBA project, which aims to create a flexible robotic
platform for agile production environments [17]. This project integrates a PDDL solver
within a BT-based control system to allow automatic rewriting of tasks at runtime based
on factory or sensor inputs [17]. The task planner is designed to provide a user-friendly
interface that allows for quick reconfiguration of robotic cells, making the system
adaptable to different industrial scenarios. PDDL is used to optimize or automate task
and process designs, and the resulting plans are executed through a modular BT
system that interacts with various ROS2 components.

SkiROS2 further extends the use of PDDL-based planning in robot control, providing
a skill-based architecture that combines PDDL and BTs to execute complex tasks
autonomously [16]. In SkiROS2, task-level planning is done using PDDL, and the plans
are translated into extended BTs (eBTs) to enhance modularity and allow fast
adaptation to change in the environment. This hybrid control structure is particularly
useful for skill-based tasks in industrial robotics, where actions need to be dynamically
adjusted based on sensor input or changes in the workspace.

Furthermore, hierarchical planning approaches have emerged to address the
challenge of scaling PDDL in complex tasks. One example is the work by Lu et al. [18],
which focuses on hierarchical extraction, planning, and BT process control using
historical trajectory data. The proposed system extracts high-level operators from past
planning trajectories, optimizing the planning process by reducing the search space
and time. This method leverages PDDL to define the planning problem and uses BTs
for task execution, ensuring that the system can handle real-time changes and task
failures by replanning at different hierarchical levels. The integration of causal analysis
in the PDDL planning process ensures that contradictions in operator ordering are
minimized, enhancing the system's robustness.

3.2 LLM-Based Planning
While PDDL-based planning provides a structured and formalized approach to task
generation and execution, its limitations become apparent in dynamic environments
where continuous re-planning and adaptability are required. This challenge has led to
the exploration of LLMs as an alternative or complementary approach for BT
generation. Unlike PDDL, which relies on predefined domain models and explicit action
descriptions, LLMs leverage vast amounts of data and NLP capabilities to generate
task plans in a more flexible and adaptive manner [19].

Recent studies have explored the potential of LLMs for planning and BT generation in
robotics and AI applications. One such area of research involves using LLMs to convert
human-provided task descriptions into executable BTs. This approach allows non-
expert users to interact with robots through natural language, specifying tasks and
goals without the need for technical knowledge of PDDL or formal planning languages.
The LLM interprets these inputs and generates a corresponding BT structure, which
the robot can then execute.

 16

One prominent example is the LLM-BT system [20], where LLMs such as GPT are
used to generate BTs by converting task descriptions into executable sequences. The
system uses an LLM to translate natural language commands into BTs, which can then
be executed by the robot. This approach has been demonstrated in complex scenarios
such as household robotics, where a robot can receive instructions like "clean the living
room," and the LLM generates a BT with subtasks such as "vacuum the floor" and
"dust the furniture." The adaptability of LLMs allows for dynamic task restructuring if
the environment changes during execution.

Another significant advancement in LLM-based planning is the LLM-MARS framework
[21], which integrates the Falcon 7B model to generate BTs and support human-robot
dialogue. This system was successfully demonstrated in the Eurobot 2023 competition,
where multi-agent systems of robots used LLM-generated BTs to perform collaborative
tasks, such as navigating and collecting objects in dynamic environments. In this
framework, the LLM not only generates BTs but also allows robots to engage in real-
time dialogue with human operators, explaining their actions and providing feedback.
The question-answering feature enhances human-robot interaction, making the
system more intuitive and adaptable to user input.

Another important development in LLM-based planning is BTGenBot, which uses
lightweight LLMs such as LLaMA and GPT-3.5 for generating BTs. By fine-tuning the
models with specific datasets related to robotic tasks, BTGenBot enables efficient and
scalable BT generation for applications like robotic manipulation and navigation. This
research explores the deployment of compact LLMs directly on robots, making the
system more practical for real-world usage where hardware limitations are a concern
[22].

In addition, SayCan [23], a hybrid system developed by Google Robotics, utilizes LLMs
to interpret natural language instructions and combine them with value functions that
guide the robot’s actions based on environmental feedback. This approach enables
robots to handle tasks with high-level goals, such as "fetch me a drink," while adapting
to real-time environmental conditions, ensuring efficient task completion. SayCan
bridges the gap between LLM-driven task interpretation and traditional robotic control
systems.

3.3 Hybrid Approaches Combining PDDL and LLMs
Planning

LLMs, while proficient in interpreting natural language and generating high-level task
plans, struggle with the functional competence required for complex robotic task
planning. LLMs often fail to account for long-term dependencies, task constraints, and
physical feasibility [24], leading to incomplete or non-executable plans. In robotic
systems, particularly in Task and Motion Planning (TAMP), these limitations are
problematic, as the robots must deal with real-world constraints such as collision

 17

avoidance and dynamic environmental changes. To address these challenges, hybrid
approaches that combine LLMs with classical planners like PDDL have emerged.
These hybrid systems allow LLMs to handle the flexibility and natural language
interface while PDDL planners ensure precise, executable, and feasible task plans.

NL2Plan [27] is a hybrid framework where LLMs convert high-level, natural language
task descriptions into PDDL specifications. The PDDL planner then refines these
specifications into structured and feasible task plans, ensuring that dependencies and
constraints are respected. By combining LLMs for task interpretation and PDDL for
execution precision, NL2Plan addresses LLMs' limitations in handling complex, long-
term tasks, improving planning accuracy and task feasibility.

LLM+P [24] takes a similar hybrid approach, using LLMs to translate user-provided
natural language commands into PDDL specifications. The PDDL planner refines the
task plan and ensures that it aligns with the robot's operational constraints. This hybrid
system enhances the user interface, making task specification easier and more flexible,
while ensuring that the plans are executable in real-world environments. LLM+P
successfully bridges the gap between natural language task input and structured task
execution.

LLM3 [26] extends the hybrid approach by integrating LLMs into the Task and Motion
Planning (TAMP) framework. Unlike traditional TAMP methods, LLM3 uses LLMs to
propose both symbolic actions and continuous motion parameters. The unique
contribution of LLM3 lies in its ability to incorporate feedback from motion planning
failures, refining task proposals iteratively based on this feedback. This allows the
system to dynamically adjust plans to avoid motion failures, such as collisions or
unreachable positions. In simulations, LLM3 demonstrated significant improvements
in task success rates and planning efficiency, particularly in complex tasks like box-
packing, where the system needed to navigate dynamic obstacles and refine its
approach based on real-time motion constraints.

PDDLEGO [28] introduces a hybrid approach designed for partially-observed
environments, where the robot does not initially have complete information about its
surroundings. In PDDLEGO, LLMs are used to iteratively generate a PDDL problem
file as the environment is explored, gradually refining the task plan as more information
is gathered. This iterative planning approach ensures that the robot can adapt its
actions based on new observations, significantly improving planning efficiency in
dynamic, partially known environments.

 18

4 Experiments

4.1 Simulation Scenarios
In prior research, task planning performance has often been evaluated using goal
sequences at mid-level complexity. However, the performance of classical planners
and LLM-based models on higher-level, more abstract goals remains underexplored
[24, 26, 27]. Moreover, there has been limited investigation into how these models
cope with noisy environments or NL inputs. To bridge these gaps, this paper proposed
two baseline tasks designed to test three methods, including classical (PDDL-based)
planners, LLM-based and hybrid planners’ methods across varying levels of task
complexity and under noisy conditions. These experiments offered insight into how
well each approach handles high-level planning challenges and environmental
uncertainty. Both Simulations are setting with Isaac Sim, which provide well
communication with ROS2.

4.1.1 Warehouse Task

In this experiment, a robot carter and 18 waypoints are placed within a simulated
warehouse environment. Various objects are located at each waypoint. The carter
must perform patrol and shot action with expected waypoints sequence. The tasks are
categorized into low-level, mid-level, and high-level settings, with detailed description
in Table 4-1 below. The scenario simulation is shown in Fig. 4-1.

Fig. 4-1 Simulation of Warehouse in Isaac Sim (a): side view (b): top view

• Low-level tasks: in these tasks, the waypoints are unconnected, meaning the
carter can move directly from starting point to the target waypoint. The planning
challenge at the level is minimal as no route optimization is required, but only
give the expected action sequence in BT.

• Mid-level tasks: at this level, a single bidirectional connection is predefined
between waypoints. The carter must traverse these connections to patrol and
perform actions at the expected waypoints. The planning challenge at the level
is performing a path in predefined connection.

 19

• High-level tasks: in this case, the carter must complete the patrol and shot
action sequence across multiple waypoints with the minimum cost. Here, the
planner must optimize the path, solving for the shortest route while completing
the necessary actions in the correct sequence.

• Domain with action variant: in this task, different action variant is considered:
types, predicates and also the surrogate actions with different effects. The goal
of this experiment is to evaluate which planning approach can maintain optimal
performance despite the noise. The expectation is that some planners,
particularly LLM-based models, may be more susceptible to environmental
noise due to their reliance on natural language interpretation, while classical
planners (PDDL-based) or hybrid models could potentially handle the variant
action more effectively by leveraging structured reasoning. The example of
Skills variant is listed in table 4-3.

Table 4-1 Overview for Warehouse Task

Warehouse Task
Complexity

Tests Test Description Noise/Changes

Low level
tasks:

Simple Test1 Partial waypoints are
patrolled.

None

 Test2 Partial waypoints are
patrolled and shot

None

 Test3 All waypoints are not
patrolled and shot

None

Middle level
tasks

Moderate Test1 Partial waypoints are
patrolled.

None

 Test2 Partial waypoints are
patrolled and shot

None

 Test3 All waypoints are not
patrolled and shot

None

High level
tasks

Complex Test1 Partial waypoints are
patrolled.

None

 Test2 Partial waypoints are
patrolled and shot

None

 Test3 All waypoints are not
patrolled and shot

None

Domain
with noise
tasks

Varies Test1(Type
Noise)

Variant are types (Add 2
irrelevant waypoints)

2 extra waypoints

 Test2(Action
Noise)

Variant are actions (Add
2 surrogate actions with
different effects)

2 extra actions

 Test3(Predicate
Noise)

Variant are predicates
(Add 2 irrelevant
predicates)

Predicate mismatch

 20

The Illustration of different scenario setting are shown as Fig.4-2.

Fig. 4-2 Scenario Setting for 4 Tasks in Isaac Sim. (a) 18Waypoints have no connection. (b) Every two
waypoints are bidirectional connected. (c) Multi connections between waypoints. (d) Keep connection

setting as (b) but with variant inputs.

The available skills in ros2 for scenario warehouse are shown in Table 4-2.

Table 4-2 Skill set in Warehouse

Skill’s name Skilll Description Properties
askCharge Carter will check battery state. It’s been

executed when state is low.
input None

output Wp

charging Carter will be charged at waypoint:
wp_charge

input Wp

output None

move Carter can move from original waypoint to
target waypoint.

input Wp1; Wp2

output None

patrol Carter can do patrol at waypoint. input Wp

output None

 21

shot Carter can shot the objects at waypoints,
the pictures will be analyzed later.

input Wp

output None

Table 4-3 Skills example variant in Warehouse

Skill’s name Skilll Description Properties
move Carter can move from original waypoint to

target waypoint.
input Wp1; Wp2

output None

move_variant Carter can move from original waypoint to
target waypoint without limitation to
waypoint connection

input Wp

output None

patrol Carter can do patrol at waypoint input Wp

output None

patrol_variant Carter can do patrol at waypoint in specific
behavior

input Wp

output None

4.1.2 Objects Sorting Task

The Object Sorting Task is a comprehensive evaluation scenario designed to test both
path planning and task planning across varying levels of complexity. Object sorting, a
common task in industrial robotics [29], requires precise handling of both object
manipulation and spatial arrangement. This task provides an ideal benchmark for
comparing the performance of PDDL-based, LLM-based, and hybrid planning methods
under increasingly complex conditions. In this experiment, a 7-DOF Panda robot was
been choosen to sort cubes [30], each represented by different colors to simulate
distinct objects. Initially, the cubes are randomly scattered in the environment, and the
robot's task is to sort them into designated target regions based on their color. The
simulation scenario is shown in Fig.4-3.

 22

Fig. 4-3 Simulation of Objects Sorting in Isaac Sim (a): side view, (b): top-down view

Four task configurations are defined, each simulating different levels of complexity and
behavior. The purpose of this task is to evaluate the planners’ ability to manage
increasingly complex goals, from simple cube sorting to more challenging
configurations that require dynamic re-planning. Notably, this experiment does not
incorporate noise (as in the warehouse task), focusing instead on assessing how well
each method handles varying goal levels. One key aspect of the task setup is the
inclusion of both 2D and 3D sorting, where cubes may be in either an accessible or
inaccessible state. The latter adds complexity, as cubes stacked underneath others
require reasoning about spatial constraints and action dependencies.

• Low-level tasks: In these tasks, the planners are tested on simple goal
execution. The planner is given a predefined sequence in which to order the
cubes, and it must generate the appropriate action sequence. The challenge in
this task is minimal, focusing on basic object ordering and pick-and-place
operations.

• Middle-level tasks: These tasks increase in complexity by requiring the planner
to stack cubes. Instead of a simple positioning goal (object_at target_position),
the task now involves sorting three cubes into a stack. The planner must
generate an entire sequence of actions to correctly stack the cubes in the
desired order.

• High-level tasks: In this level, the task becomes significantly more complex by
introducing color priority. The planner is required to sort cubes based on color
precedence, dynamically adjusting its plan when cubes of the highest priority
are inaccessible. For instance, if red cubes are initially blocked by other cubes,
the planner must re-prioritize and sort blue or green cubes, returning to red once
they become accessible again. This scenario demands continuous task re-
planning and effective interaction with a dynamic environment, presenting a
significant challenge for classical planners, particularly those based on PDDL

 23

2.1, which may struggle with real-time re-planning and handling of non-static
conditions.

Across these task levels, this paper aims to identify the strengths and limitations of
each planning approach in handling increasingly complex and dynamic goals. The
overview of task setting is shown at Table 4-3. For example, in Fig.4-4. The planner
should plan a BT to execute the sorting behavior as sorting stacks (from stack1 to
stack9. Panda needs sort all 3 cubes (from top cube to bottom cube) in one stack, then
move to next stack, until all stacks are sorted.) As the main goal, The stacks sequence
are defined, but the sub goal sequence is the part the planner needs to solve.

Table 4-4 Overview of Objects Sorting Tasks

Objects Sorting Task Complexity Tests Test Description
Low level tasks: Simple Test1 Cube order without specific connections

 Test2 Cube order with specific connection(mode 1)

Middle level
tasks

Moderate Test1 s1*,s2,s3,s4,s5,s6,s7,s8,s9

 Test2 s9,s6,s3,s2,s5,s8,s7,s4,s1

 Test3 s1,s4,s7,s8,s9,s6,s3,s2,s5

High level tasks Complex Test1 Color priority: Red, Blue, Green

 Test2 Color priority: Blue, Green, Red

 Test3 Color priority: Green, Red, Blue

The available skill set is shown at Table 4-4.

Table 4-5 Skill set in Objects Sorting Scenario

Skill’s name Skilll Description Properties
setScene Add all dynamic objects to moveit2, which

helps generate trajectories to skill: move
input case

output None

removeScene After one workflow finishes, the scene
should be removed

input case

output None

move Manipulator can move end effector from
original pose to target pose

input Pose

output None

pick Manipulator will close the gripper, touch the
object, then hold it.

input object

output None

isGripperOpen The Manipulator will check the state of the
gripper.

input None

output None

 24

place Manipulator will loose the gripper. input object

output None

Fig. 4-4 The illustration of one example for middle level task

4.2 Experiment with PDDL-based planner
For the execution of the testing scenarios, PlanSys2 was chosen over other
frameworks like SkiROS2 [31, 32]. Several key factors motivated this decision,
particularly in the context of our experimental objectives. PlanSys2 directly translates
PDDL-generated plans from the POPF planner into executable BTs via the
BT_executor, enabling efficient, automated testing without manual intervention. This
seamless workflow contrasts with SkiROS2, which requires more configuration for its
extended BTs (eBTs) and modular skills, adding unnecessary complexity for our task-
oriented study. While SkiROS2 excels in industrial applications with its skill-based
control, PlanSys2 is better suited for task planning, especially in experiments where
automatic BT generation and execution are essential. PlanSys2 also simplifies the
developer workflow by automating the planning-to-execution pipeline; developers only
need to define PDDL domain and problem files, and the system handles the rest. In
contrast, SkiROS2 demands more setup, making it less practical for our needs. Given
our focus on testing the performance of classical and LLM-based planners in automatic
BT generation, PlanSys2’s robust PDDL integration and simplified execution process
made it the optimal choice for our experiments.

The following Fig.4-5 demonstrate the architecture of PlanSys2. In this framework, the
input consists of pairs of PDDL files, including domain.pddl and problem.pddl files.

 25

These files are processed by the PlanSys2 system's POPF planner to generate a plan
for each application, where the plan represents a sequence of actions. The
executor_client then automatically translates these generated plans into BT. Next, the
BT_executor executes the BTs by calling each atomic action. The actions can
communicate with either a simulation platform, such as Isaac Sim, or a real-world
environment to carry out the necessary tasks. During execution, various skills are
invoked, such as warehouse skills (e.g., setScene, move, place, pick) and object
sorting skills (e.g., askCharging, move, patrol). These operations are logged in real-
time by the Log Monitor, which records all execution data into a database. Finally, in
the evaluation phase, the results are collected and assessed based on two primary
metrics: BT Accuracy Rate (how accurately the tasks are performed) and BT
Generation Time (how quickly the BTs are created). BT Generation Time consists of
two parts: the time taken to generate the plan and the time taken to translate the plan
into a BT. The evaluation process is only been discussed here once, because all the
frameworks following share same structure. This entire workflow is highly automated,
streamlining the planning-to-execution pipeline for developers and eliminating the need
for manual intervention, thereby improving efficiency.

Fig. 4-5 Architecture of PlanSys2 for experiments scenarios

 26

4.3 Experiment with LLMs
Based on the analysis in Section 3.2, numerous frameworks have been proposed by
researchers that leverage LLMs as planners for automatic BT generation. Through
comparative experiments, it has been observed that models such as GPT-4 and
Claude 3.5 exhibit high accuracy in generating BTs from natural language descriptions.
Fine-tuning smaller models with specialized datasets has proven effective for
translation tasks; however, their performance in reasoning tasks remains limited. Given
the higher reasoning capability required for complex planning, GPT-4o was choosen
and Claude 3.5 as the primary LLM-based planners for our experiments. Other
supplementary techniques, such as graph search algorithms, are beyond the scope of
this study and are not included in our evaluation.

In this paper the AutoGen framework was chosen [33], which particularly in multi-agent
environments, where a complex task is decomposed into smaller sub-tasks that can
be handled by individual agents. This approach was been named as LLM2BT, it
ensures that each agent is responsible for a specific task within the overall system,
increasing the scalability and efficiency of task execution. The input to the planner
consists of a scenario description provided in natural language, detailing the required
tasks and conditions. The planner then generates a BT that satisfies the given
constraints.

To ensure the correctness and feasibility of the generated BT, the BT_executor
performs semantic validation before task execution. The success rate of the generated
BT is evaluated through simulations in Isaac Sim, which allows for rigorous testing of
the planner’s performance under various task complexities and environmental
conditions. The overall architecture is illustrated in the figure below, which outlines the
flow from NL input to BT generation, semantic validation, and execution in the
simulation environment. This structured approach enables us to systematically assess
the performance of LLM-based planners in generating and executing BTs, focusing on
both task accuracy and adaptability in dynamic environments.

 27

Fig. 4-6 Architecture of LLMBT

The framework depicted in the Fig. 4-6 operates using three agents to handle the
various stages of BT generation. Each agent is assigned a specific role in the workflow,
from scenario identification to task execution and BT generation.

1. agent_scenario: This agent is responsible for retrieving an appropriate scenario
description from a predefined database, based on the task at hand. It compiles
necessary information such as executable skill sets, skill attributes, and requirements
specific to the task. This data forms the foundation for the next step and is passed
forward to the subsequent agent.

2. agent_task: This agent receives input from either the user or a pre-defined task set.
It processes this input and aligns it with the task requirements obtained from the
scenario. The output of agent_scenario and agent_task is combined to generate a
cohesive task description that includes the needed actions and skills, which are then
passed to the agent_BTGen for BT generation.

 28

3.agent_BTGen: This agent is guided by a prompt-based role definition (Prompt_Role)
and is tasked with generating the actual BT. The role prompt specifies the format of
the BT, including details such as whether to use sub-trees and other structural
requirements. The textual information from the previous agents is processed by
agent_BTGen, which translates it into a structured BT ready for execution.

4. BT_executor: Before the BT is executed, the BT_executor module acts as a
validator, checking the generated BT for semantic accuracy. If any errors are identified
during this validation process, feedback is provided to agent_BTGen. If necessary, a
replan process is initiated to correct any issues with the BT, ensuring that the final BT
passes the initial validation.

5. Feedback and Replanning: The feedback loop ensures that any inaccuracies in
the generated BT are addressed by agent_BTGen. If the BT does not meet the
required standards, agent_BTGen revises the tree until it passes the semantic check
conducted by BT_executor. Once validated, the BT is then ready for execution across
the series of predefined test cases (Application1, Application2, etc.).

The framework not only ensures that BT generation is iterative, robust, and capable of
adapting to dynamic inputs and changes in task requirements, but also presents
several advantages over traditional methods like PlanSys2. One of the key benefits of
this approach is the simplification of scenario description. Unlike PlanSys2, which
relies heavily on PDDL-based domain and problem modeling, this method allows users
to directly model the world and scenario using NL. This greatly reduces the complexity
of the input and makes the process more accessible, as users no longer need deep
expertise in PDDL to define tasks and environments. As a result, this approach offers
both simplicity and adaptability, making it a more versatile solution for automatic BT
generation compared to PlanSys2.

4.4 Experiment with Hybrid Planners
This section investigates two types of hybrid planners that combine the strengths of
LLMs and classical planners, with distinct goals for each method.

4.4.1 Hybrid_LLM2PDDL

The first hybrid approach uses LLMs primarily for translating high-level natural
language task descriptions into problem.pddl files, which are then solved by a classical
planner such as POPF [34]. The aim here is to ensure that the generated BTs are
accurate and executable, as the classical planner handles the core task planning and
constraint resolution. By offloading the reasoning and task-solving to a traditional
planner, this method leverages the LLM’s ability to simplify task descriptions while
relying on proven planning algorithms to execute complex tasks with precision. This
approach prioritizes correctness in the generated BTs by ensuring that the final plan is
structurally sound and adheres to task constraints.

 29

Fig. 4-7 Architecture of BT Generation Framework using LLM with POPF

4.4.2 Hybrid_PDDL2LLM

The second hybrid approach evaluates the LLM’s ability to handle task solving
independently. In this method, the LLM is responsible for both task planning and
execution by directly generating BTs from PDDL inputs without the involvement of a
classical planner. This approach tests whether the reasoning capabilities of the LLM
can be enhanced by giving it more control over the problem-solving process. The goal
is to assess how the quality of the generated BTs is influenced by different input
formats (NL vs. PDDL) and to determine if the LLM can handle task dependencies and
constraints effectively. The architecture of this framework is shown as Fig.4-8.

Through these two experiments, this paper aim to evaluate (1) the impact of input
formats on the accuracy and feasibility of BT generation, and (2) the potential for LLMs
to enhance reasoning and adaptivity in task planning when directly responsible for task
execution. The first approach prioritizes correctness and reliability by incorporating

 30

classical planners, while the second aims to explore the LLM’s full reasoning potential
in dynamic and complex environments.

Fig. 4-8 Architecture of BT Generation Framework of second hybrid approach

 31

5 Evaluation

5.1 Overview of Evaluation Criteria
To effectively compare the performance of various planners, two key metrics are
selected: BT Accuracy Rate and BT Generation Time. These metrics evaluate the
planners’ abilities in terms of accuracy and efficiency across tasks of varying
complexity [33]. It is important to note that BT Accuracy Rate carries more weight than
BT Generation Time, emphasizing the prioritization of accuracy in task execution,
particularly in complex or critical scenarios.

BT Accuracy Rate measures the planner’s ability to execute tasks accurately and
consistently at different levels of complexity. It reflects how well the planner handles
goal definitions, environmental challenges, and dynamic conditions. In real-world
applications such as autonomous driving or robotics, where accuracy is critical, a high
BT Accuracy Rate indicates the planner’s robustness in managing intricate and
unpredictable scenarios. Planners that excel in this metric demonstrate their ability to
consistently generate BTs that lead to correct task execution, even in dynamic or
complex environments

BT Generation Time assesses the time taken by the planner to generate a valid BT
from the given task description. This metric is particularly crucial for real-time
applications where delays in planning can significantly impact task execution and
recovery from unexpected changes. Although speed is important, especially in time-
sensitive environments, accuracy often takes precedence. A longer BT Generation
Time may be acceptable if it ensures correct task execution. However, in dynamic
systems such as autonomous vehicles or real-time robotic control, minimizing BT
Generation Time is also critical for maintaining operational efficiency and
responsiveness.

 32

5.2 Evaluation of PDDL-based Planners
The performance of PDDL-based planners, in this paper PlanSys2 was chosen, is
evaluated across two scenarios: Warehouse and Object Sorting. These scenarios
encompass a range of task complexities, from simple to high-level, allowing for a
comprehensive evaluation of the planners’ strengths and limitations. BT Accuracy Rate
and BT Generation Time are the key metrics considered for this evaluation.

BT Accuracy Rate:

In the Warehouse scenario, PlanSys2 consistently achieves a 100% BT accuracy rate
across all levels of task complexity—simple, moderate, and complex, as long as the
PDDL domain and problem definitions are correctly set up(The results are shown in
Fig.5-2). This highlights the strength of structured, logic-based planning systems in
tasks where the environment and task constraints are clearly defined. For example, in
simple tasks where the carter must follow a predefined sequence of waypoints, the
success rate remains perfect, as PlanSys2 reliably executes the plan without deviation.
Similarly, in mid-level tasks where the waypoints are connected bidirectionally, the
planner accurately traverses the expected path. However, PlanSys2's limitations are
exposed when the environment contains multiple actions or skills with the same name
but different effects. In these cases, PlanSys2 tends to select the action that results in
the least state variation, even if it is not the optimal choice. For instance, when multiple
move actions (in Fig.5-1) with identical function but differing effects are present, the
planner may incorrectly prioritize the action that minimally affects the system state,
rather than the one that is required to meet the task objectives. This behavior is
particularly problematic in tasks where the planner must select actions based on
nuanced conditions, such as differentiating between similar skills that produce different
outcomes.

Fig. 5-1 Example of multiple move actions (a) variant_move, (b)standard move

 33

Fig. 5-2 BT Accuracy Rate in warehouse experiment

Fig. 5-3 BT Accuracy Rate in Objects Sorting experiment

In the Objects Sorting scenario, which tests the planners’ ability to handle more
abstract and dynamic goals, PlanSys2 excels at simple tasks where the objectives and
action sequences are explicitly defined. For example, when the task involves sorting
cubes according to a predefined sequence (giving cube’s ID as goal), PlanSys2
successfully completes the task with a 100% success rate, given that the task is fully
specified in the problem file(The results are shown in Fig.5-3).

 34

However, as the complexity of the task increases, PlanSys2 struggles to maintain its
performance. In mid-level tasks that require the planner to solve for stack
configurations without specific goal details (e.g., the task simply specifies that the
cubes must be stacked in a certain order), PlanSys2 begins to show limitations. The
most significant challenge arises in high-level goal in complex tasks, where the sorting
must follow color priority (e.g., sort red cubes first, followed by blue, then green). These
tasks require dynamic re-planning and goal adjustment based on the current state of
the environment, which traditional PDDL-based planners are not designed to handle.
Without additional skills or explicit action definitions, PlanSys2 is unable to solve these
high-level tasks, leading to failure in such cases.

BT Generation Time:

In terms of Planning Time, PlanSys2 performs efficiently in simple and mid-level tasks,
especially when the problem is well-structured, and the goal is clearly defined. In these
cases, the planner can quickly generate a valid plan without significant computational
overhead. For example, in the Warehouse scenario, when the task is straightforward
(e.g., following a predefined path with minimal waypoints), PlanSys2 generates BTs
quickly and accurately, making it highly suitable for static environments where goals
and constraints are known in advance.

Fig. 5-4 BT Generation Time based on TEST3 in Warehouse experiment

 35

Fig. 5-5 BT Generation Time in Warehouse experiment

Fig. 5-6 BT Generation Time in objects sorting experiment

However, as task complexity increases, particularly in dynamic environments, BT
generation tends to rise due to the need for re-planning. In more complex tasks, such

 36

as those involving dynamic goal re-prioritization or handling multiple action choices,
PlanSys2 must repeatedly solve the problem, which significantly increases the
planning time. This is especially evident in the Object Sorting scenario during the high-
level tasks, where color-priority sorting requires dynamic decision-making based on
real-time changes in the environment. PlanSys2's inability to handle these dynamic
requirements leads not only to failures in task success but also to increased planning
times due to its lack of adaptive capabilities(The results of BT generation Time can be
checked in Fig.5-5 and Fig.5-6).

5.3 Evaluation of LLM-based Planners

BT Accuracy Rate:

In the Warehouse scenario, LLM-based planners achieved a 100% BT accuracy rate
for both simple and moderate tasks. This indicates that, when the task complexity is
limited, LLMs are capable of effectively reasoning through the problem space and
generating correct plans. Their ability to translate those plans into BTs for execution
by the corresponding system further demonstrates the strength of LLMs in structured
tasks. For example, in tasks where the carter robot must follow a predetermined
sequence of waypoints, the LLM accurately interprets the instructions and generates
the appropriate action sequence.

However, as the task complexity increases, such as in complex tasks, the Task
Success Rate for LLM-based planners begins to decline. In high-level tasks, where the
carter must optimize routes to minimize the number of waypoints visited, LLMs often
fail to identify the optimal solution. For instance(the illustration path is shown at Fig.5-
7.), when multiple solution paths are available, the LLM may struggle to consistently
select the route that minimizes waypoint traversal, even when the prompt explicitly
emphasizes the importance of optimizing the path or provides optimal solutions as
examples. This reveals a limitation in the LLM’s ability to perform optimal pathfinding,
as its reasoning is not always effective in navigating multiple solution spaces. (In
complex task, goal: patrol and shot at wp_16. The path generated by LLM is not
minimum cost as the correct path. While patrol and shot action can be correct executed.
The initial state of carter is wp_6. The optimum path was wp_6 -> wp_5 -> wp_4 ->
wp_1 -> wp_17 ->wp_16. But the path generated from LLM was wp_6 -> wp_7 -> wp_8
-> wp_9 -> wp_11 -> wp_12 -> wp_16. The passing waypoints are more than 4.

 37

Fig. 5-7 Illustration of plan generated from LLMs

Nevertheless, when variation in skills is introduced, LLMs demonstrate some ability to
intelligently avoid incorrect skills by incorporating specific prompt instructions. By
augmenting the goal with clear guidance or additional cues, LLMs can circumvent
some pitfalls, such as using the wrong action, but they still fall short of producing an
entirely accurate plan in all cases. The variability in performance becomes more
apparent when more complex paths and decisions need to be made.

In the Object Sorting scenario, the LLM-based planner performed similarly to PDDL-
based planners in simple tasks, achieving 100% accuracy. This success can be
attributed to the fact that, in simple tasks, the planner only needs to reason through
basic state transitions for actions, while the rest of the task involves simple translation
and execution. As there are no alternative ways to complete these tasks, LLMs have
no difficulty in generating the correct plan.

However, as the tasks become more complex, such as in mid-level and high-level tasks,
the LLM begins to struggle. In mid-level tasks, the LLM must reason about the
environment, particularly how to stack cubes according to the task goals. This requires
a more sophisticated understanding of spatial relationships and sequencing, which
poses a challenge for LLMs. For example, in high-level tasks, where cubes must be
sorted according to color priority while dealing with dynamic re-planning, the LLM
achieves a BT success rate of only 29.6%. The main issue arises from the LLM’s
difficulty in understanding and tracking the stacking dependencies of the cubes.
Specifically, while the LLM can plan for the cubes that are immediately available (such
as those on the top of the stack), it fails to account for the inaccessibility of cubes that
are blocked by others. This inability to dynamically update the status of cubes based
on their availability highlights a key limitation: the need for the LLM to grasp inter-cube

 38

dependencies and continuously update its understanding of the environment, akin to
solving a Markov decision process, where the current state of the system depends on
its previous state.

BT Generation Time:

In terms of BT Generation Time, LLM-based planners exhibit significantly longer
planning times compared to PDDL-based planners like PlanSys2. This is primarily due
to the dual processes of reasoning and translation inherent in LLM-based planning.
The LLM must first interpret the task in NL, deduce the necessary plan, and then
translate that plan into a BT. This adds substantial overhead to the planning process,
particularly in more complex tasks where deeper reasoning and environmental
understanding are required.

In both the Warehouse and Object Sorting scenarios, the data shows that the overall
planning time for LLM-based planners is consistently higher than for PDDL-based
planners, especially as task complexity increases. In simple tasks, the additional time
spent on natural language interpretation is minimal, but as the tasks grow in complexity
(e.g., in high-level tasks that involve multiple decision points or abstract goal
definitions), the time required to generate a valid plan increases significantly. For
instance, in tasks where multiple waypoints or complex stacking arrangements need
to be considered, the LLM takes longer to process the information and produce an
executable BT.

5.4 Evaluation of Hybrid Planners

5.4.1 Hybrid_LLM2PDDL

BT Accuracy Rate

In this approach, LLMs are used to translate NL prompts into problem.pddl and
domain.pddl files, while the reasoning and task-solving are handled by the PlanSys2
classical planner. Compared to using LLMs solely for task-solving, this hybrid method
improves BT success rates, particularly in complex tasks within the Warehouse
scenario. The hybrid method maintains 100% accuracy in simple and mid-level tasks,
similar to LLM-based planners, but offers notable improvements in complex tasks by
leveraging the structured reasoning of the PDDL-based framework.

For tasks involving action variations, this method achieves complete accuracy by
excluding irrelevant actions through the use of prompts that emphasize the importance
of specific actions. By translating the NL prompt into PDDL files, Hybrid_LLM2PDDL
avoids potential pitfalls associated with action selection, ensuring that only the correct
and relevant actions are executed. For example, in complex Warehouse tasks, where
multiple action variations could lead to incorrect task execution, this hybrid approach

 39

successfully generates valid PDDLs that exclude irrelevant actions and maintain task
accuracy.

However, in the Object Sorting scenario, the hybrid method struggles to generate
accurate PDDLs for middle and complex task sets. In these cases, the LLM is unable
to fully comprehend the spatial and dynamic complexities of cube stacking or color
prioritization, leading to failures in generating viable plans. As a result, the BT accuracy
in the Object Sorting scenario remains on par with that of PlanSys2, failing to achieve
notable improvements in more complex tasks where dynamic re-planning is critical.

BT Generation Time

In terms of BT Generation Time, the hybrid approach in both the Warehouse and
Object Sorting scenarios involves the combined time for both LLM-based translation
and PlanSys2-based planning. This results in a longer overall planning time compared
to using either planner independently, as the translation of NL prompts into PDDL adds
an additional step to the process. From the experimental data, it is evident that LLM
translation time consistently accounts for the majority of the planning duration,
particularly in more complex tasks where the interpretation and translation of the task
prompt become more computationally intensive.

5.4.2 Hybrid_PDDL2LLM

BT Accuracy Rate

In this approach, LLMs do not take NL as input; instead, they receive pre-defined PDDL
files as input to generate BTs. The purpose of this framework is to determine whether
modifying the prompt format—from NL to PDDL—can enhance the LLM’s reasoning
capabilities and improve task accuracy in complex scenarios.

Experimental results demonstrate that changing the input from NL to PDDL does not
significantly improve the LLM’s accuracy or reasoning capabilities. In fact, when fed
PDDLs, classical planners like PlanSys2 exhibit higher accuracy in solving tasks
compared to LLM-based reasoning. This conclusion is drawn from both the Warehouse
and Object Sorting scenarios, where the LLM struggles to handle complex tasks based
solely on PDDL inputs, leading to suboptimal task solutions.

However, in the Warehouse action variation tests, adding prompt cues in the
Prompt_Role section helps the LLM avoid potential action conflicts and select the
correct action. This demonstrates the LLM’s ability to function effectively when
provided with explicit guidance on action selection, though its performance still lags
classical planners in complex, high-level tasks.

In the Object Sorting scenario, the LLM fails to generate viable plans for middle and
complex task sets due to its inability to design PDDLs tailored to the required task
constraints, resulting in zero accuracy for these task sets.

 40

BT Generation Time

In terms of BT Generation Time, the planning time for this hybrid framework closely
mirrors that of LLM2BT, with slight increases as task complexity rises. This is because
the process of reasoning over PDDL inputs is more challenging for the LLM than
interpreting NL prompts, leading to increased computational overhead as task difficulty
increases. However, the LLM’s performance in terms of time efficiency remains
consistent, albeit slower than classical PDDL-based planners like PlanSys2.

In conclusion, Hybrid_LLM2PDDL provides significant improvements in task accuracy
for complex tasks in the Warehouse scenario by combining the strengths of NL-based
translation and structured PDDL reasoning, while the Hybrid_PDDL2LLM framework
struggles to improve task-solving capabilities when relying solely on PDDL inputs.
Despite improvements in handling action variations, the hybrid planners remain slower
than PDDL-based approaches and are less effective in high-complexity tasks in the
Object Sorting scenario.

 41

6 Conclusion and Future Work

6.1 Conclusion
This paper began by introducing the background of the study, highlighting the potential
of BTs for behavior control in robotics. With increasing complexity in robotic tasks, the
need for automatically generating BTs has garnered attention in both LLM-based and
PDDL-based methods. However, a thorough comparative analysis of the performance
of these two approaches remains underexplored. Additionally, the limitations of PDDL-
based task solvers, particularly in their ability to abstract complex goals and their
sensitivity to noise, provided further motivation for this research [35].

To construct our experiments, the Isaac Sim simulation environment from Nvidia was
chosen to build two test scenarios. These scenarios were designed to evaluate the
performance of various solvers in terms of their ability to handle tasks with varying
levels of complexity and optimal solution strategies. The results showed that:

For simple tasks (where the goal contains explicitly defined steps), both PDDL-based
and LLM-based planners achieved 100% accuracy. However, when multiple solutions
were possible, the PDDL-based planner consistently found the optimal solution, while
LLM-based planners struggled to do so, even when the prompt explicitly emphasized
finding the best solution.

For complex tasks (where the goal is a high-level task involving dynamic planning),
PDDL 2.1 failed to generate a valid plan or corresponding BTs. In contrast, LLM-based
planners could generate solutions with around 30% accuracy, using relatively simple
modeling. This reveals the potential of LLMs in solving complex tasks with minimal
effort, even though their reasoning capabilities are still limited compared to structured
methods.

6.2 Future Work
The primary goal of this paper was to design experiments that compare the capabilities
of PDDL-based planners and LLM-based planners across tasks with varying levels of
complexity. While the study yielded valuable insights, many areas remain for further
exploration. For instance, this work only tested PDDL 2.1, but there is a need to explore
the capabilities of PDDL 3 and PDDLStream [37] in solving more complex tasks.
Additionally, for LLMs as solvers, the current validation only checks the syntactical
correctness of the BTs and their execution effectiveness. Further research is needed
to develop validators that can assess the functional correctness of BTs based on task
execution performance.

Moreover, reinforcement learning-based BT generation techniques represent a
promising avenue for future research [36]. Such methods could enhance the decision-

 42

making abilities of BTs in dynamic environments, further pushing the boundaries of
what autonomous robots can achieve.

 43

Bibliography

[1] Iovino, Matteo, et al. "A survey of behavior trees in robotics and ai." Robotics
and Autonomous Systems 154 (2022): 104096.

[2] Colledanchise, Michele, and Petter Ögren. Behavior trees in robotics and
AI: An introduction. CRC Press, 2018.

[3] Behaviortree.dev. (2024). About | BehaviorTree.CPP. [online] Available at:
https://www.behaviortree.dev/docs/intro/ [Accessed 14 Sep. 2024].

[4] Paz, Azaria. Introduction to probabilistic automata. Academic Press, 2014.

[5]

Iovino, M., Förster, J., Falco, P., Chung, J.J., Siegwart, R. and Smith, C.
(2024). Comparison between Behavior Trees and Finite State
Machines. arXiv (Cornell University).
doi:https://doi.org/10.48550/arxiv.2405.16137

[6] M. Mateas and A. Stern, “A behavior language for story-based believable
agents,” IEEE Intelligent Systems, vol. 17, no. 4, pp. 39–47, Jul. 2002, doi:
https://doi.org/10.1109/mis.2002.1024751.

[7] M. Nicolau, D. Perez-Liebana, M. O’Neill and A. Brabazon, "Evolutionary
Behavior Tree Approaches for Navigating Platform Games," in IEEE
Transactions on Computational Intelligence and AI in Games, vol. 9, no. 3,
pp. 227-238, Sept. 2017, doi: 10.1109/TCIAIG.2016.2543661.

[8] G. Florez-Puga, M. A. Gomez-Martin, P. P. Gomez-Martin, B. Diaz-Agudo
and P. A. Gonzalez-Calero, "Query-Enabled Behavior Trees," in IEEE
Transactions on Computational Intelligence and AI in Games, vol. 1, no. 4,
pp. 298-308, Dec. 2009, doi: 10.1109/TCIAIG.2009.2036369

[9] M. Colledanchise and P. Ögren, "How Behavior Trees Modularize Hybrid
Control Systems and Generalize Sequential Behavior Compositions, the
Subsumption Architecture, and Decision Trees," in IEEE Transactions on
Robotics, vol. 33, no. 2, pp. 372-389, April 2017, doi:
10.1109/TRO.2016.2633567

 44

[10] J. A. Bagnell et al., "An integrated system for autonomous robotics
manipulation," 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 2955-2962,
doi: 10.1109/IROS.2012.6385888.

[11] A. Csiszar, M. Hoppe, S.A. Khader, A. Verl, Behavior trees for tasklevel
programming of industrial robots, in: T. Schüppstuhl, J. Franke, K. Tracht
(Eds.), Tagungsband Des 2. Kongresses Montage Handhabung
Industrieroboter, Springer, Berlin, Heidelberg, 2017, pp. 175–186, http:
//dx.doi.org/10.1007/978- 3- 662- 54441- 9_18.

[12] M. Colledanchise, D. Almeida and P. Ögren, "Towards Blended Reactive
Planning and Acting using Behavior Trees," 2019 International Conference
on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp.
8839-8845, doi: 10.1109/ICRA.2019.8794128.

[13] S. Macenski, F. Martín, R. White and J. G. Clavero, "The Marathon 2: A
Navigation System," 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 2718-2725,
doi: 10.1109/IROS45743.2020.9341207.

[14] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas and P. Oegren, "The
Advantages of Using Behavior Trees in Mult-Robot Systems," Proceedings
of ISR 2016: 47st International Symposium on Robotics, Munich, Germany,
2016, pp. 1-8.

[15] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave
Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy,
David Smith, Ying Sun, and Daniel Weld. 1998. PDDL - The Planning
Domain Definition Language. (08 1998).

[16] M. Mayr, F. Rovida and V. Krueger, "SkiROS2: A Skill-Based Robot Control
Platform for ROS," 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 6273-6280, doi:
10.1109/IROS55552.2023.10342216.

[17] T. Ribeaud and C. Z. Sprenger, "Behavior Trees based Flexible Task
Planner Built on ROS2 Framework," 2022 IEEE 27th International
Conference on Emerging Technologies and Factory Automation (ETFA),

 45

Stuttgart, Germany, 2022, pp. 1-4, doi:
10.1109/ETFA52439.2022.9921683.

[18] X. Lu, H. Fang, Y. Bai and R. Zhang, "Hierarchical Extraction, Planning and
Behavior Tree Process Control Based on Historical Trajectory," 2023 42nd
Chinese Control Conference (CCC), Tianjin, China, 2023, pp. 4549-4555,
doi: 10.23919/CCC58697.2023.10240404.

[19] F. Li, X. Wang, B. Li, Y. Wu, Y. Wang, and X. Yi, “A Study on Training and
Developing Large Language Models for Behavior Tree
Generation,” arXiv.org, Jan. 15, 2024. https://arxiv.org/abs/2401.08089
(accessed Mar. 31, 2024).

[20] H. Zhou, Y. Lin, L. Yan, J. Zhu, and H. Min, “LLM-BT: Performing Robotic
Adaptive Tasks based on Large Language Models and Behavior Trees,”
arXiv (Cornell University), vol. 33, pp. 16655–16661, May 2024, doi:
https://doi.org/10.1109/icra57147.2024.10610183.

[21] A. Lykov et al., “LLM-MARS: Large Language Model for Behavior Tree
Generation and NLP-enhanced Dialogue in Multi-Agent Robot Systems,”
arXiv (Cornell University), Dec. 2023, doi:
https://doi.org/10.48550/arxiv.2312.09348.

[22] R. A. Izzo, G. Bardaro, and M. Matteucci, “BTGenBot: Behavior Tree
Generation for Robotic Tasks with Lightweight LLMs,” arXiv.org, Mar. 19,
2024. https://arxiv.org/abs/2403.12761 (accessed May 17, 2024).

[23] M. Ahn et al., “Do As I Can, Not As I Say: Grounding Language in Robotic
Affordances,” Apr. 2022, doi: https://doi.org/10.48550/arxiv.2204.01691.

[24] B. Liu et al., “LLM+P: Empowering Large Language Models with Optimal
Planning Proficiency,” arXiv.org, May 04, 2023.
https://arxiv.org/abs/2304.11477 (accessed May 31, 2023).

[25] H. H. Zhuo, X. Chen, and R. Pan, “On the Roles of LLMs in Planning:
Embedding LLMs into Planning Graphs,” arXiv (Cornell University), Feb.
2024, doi: https://doi.org/10.48550/arxiv.2403.00783.

 46

[26] S. Wang et al., “LLM^3:Large Language Model-based Task and Motion
Planning with Motion Failure Reasoning,” arXiv.org, Mar. 18, 2024.
https://arxiv.org/abs/2403.11552 (accessed Mar. 20, 2024).

[27] E. Gestrin, M. Kuhlmann, and J. Seipp, “NL2Plan: Robust LLM-Driven
Planning from Minimal Text Descriptions,” arXiv (Cornell University), May
2024, doi: https://doi.org/10.48550/arxiv.2405.04215

[28] L. Zhang, P. Jansen, T. Zhang, P. Clark, C. Callison-Burch, and N. Tandon,
“PDDLEGO: Iterative Planning in Textual Environments,” arXiv (Cornell
University), May 2024, doi: https://doi.org/10.48550/arxiv.2405.19793.

[29] Z. Li, Nagadastagiri Challapalle, Akshay Krishna Ramanathan, and V.
Narayanan, “IMC-Sort: In-Memory Parallel Sorting Architecture using
Hybrid Memory Cube,” Sep. 2020, doi:
https://doi.org/10.1145/3386263.3407581.

[30] S. Tittel, "Analytical Solution for the Inverse Kinematics Problem of the
Franka Emika Panda Seven-DOF Light-Weight Robot Arm," 2021 20th
International Conference on Advanced Robotics (ICAR), Ljubljana,
Slovenia, 2021, pp. 1042-1047, doi: 10.1109/ICAR53236.2021.9659393.

[31] F. Martín, J. G. Clavero, V. Matellán and F. J. Rodríguez, "PlanSys2: A
Planning System Framework for ROS2," 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Prague, Czech
Republic, 2021, pp. 9742-9749, doi: 10.1109/IROS51168.2021.9636544.

[32] M. Mayr, F. Rovida and V. Krueger, "SkiROS2: A Skill-Based Robot Control
Platform for ROS," 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 6273-6280, doi:
10.1109/IROS55552.2023.10342216.

[33] J. Bernhard, K. Esterle, P. Hart and T. Kessler, "BARK: Open Behavior
Benchmarking in Multi-Agent Environments," 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 2020, pp. 6201-6208, doi: 10.1109/IROS45743.2020.9341222.

[34] Q. Chen and Y.-J. Pan, “An Optimal Task Planning and Agent-aware
Allocation Algorithm in Collaborative Tasks Combining with PDDL and

 47

POPF,” arXiv (Cornell University), Jul. 2024, doi:
https://doi.org/10.48550/arxiv.2407.08534.

[35] S. Kambhampati et al., “LLMs Can’t Plan, But Can Help Planning in LLM-
Modulo Frameworks,” arXiv.org, Jun. 11, 2024.
https://arxiv.org/abs/2402.01817 (accessed Aug. 01, 2024).

[36] Y. Fu, L. Qin, and Q. Yin, “A Reinforcement Learning Behavior Tree
Framework for Game AI,” Jan. 2016, doi: https://doi.org/10.2991/essaeme-
16.2016.120.

[37] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling,
“PDDLStream: Integrating Symbolic Planners and Blackbox Samplers via
Optimistic Adaptive Planning,” Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 30, pp. 440–448, Jun. 2020,
doi: https://doi.org/10.1609/icaps.v30i1.6739.

 48

Declaration of Compliance

I hereby declare to have written this work independently and to have respected in its
preparation the relevant provisions, in particular those corresponding to the copyright
protection of external materials. Whenever external materials (such as images,
drawings, text passages) are used in this work, I declare that these materials are
referenced accordingly (e.g. quote, source) and, whenever necessary, consent from
the author to use such materials in my work has been obtained.

Signature: Chuang Yan

 Stuttgart, on the <26.09.2024>

