

University of Stuttgart Institute of Industrial Automation and Software Engineering

> Survey on Large Language Models for Applications in Industrial Automation and Software Engineering

Research thesis 3655

Haonan Chen

Electrical Engineering and Information Technology

Contents

- State-of-the-art of LLMs
- Methodological approaches
- Applications
- Evaluation methods
- Challenges and future directions
- Conclusion

State-of-the-art LLM

What the latest LLMs have been released?

- Search Strategy
- Filtering Strategy
- Overview

State-of-the-art of LLMs

Search Strategy

1. Review of Existing Surveys and Literature

Related Survey Papers

1	A Survey of Large Language Models
2	A Survey on Large Language Models for Software Engineering
3	A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage
4	Large Language Models: A Survey
13	Large Language Models for Software Engineering: A Systematic Literature Review

3. Industry news

2. Keyword Searches

Text Generation

LLMs + Text2Text Generation Multimodal

4. AI model Databases and Aggregators

Papers With Code

State-of-the-art of LLMs

Overview

• 30 State-of-the-art of LLMs are collected

LLMs released from January 1, 2023 to May 31, 2024

Methodologies

But, how can we apply these LLMs?

- Prompt Engineering
- Fine-Tuning
- RAG
- Tool-Using

Methodological approaches using LLMs

Prompt Engineering, Fine-Tuning, RAG, and Tool-Using

Methodological approaches using LLMs Prompt Engineering vs Fine-Tuning vs RAG

	Promt Engineering	Fine-Tuning	RAG
Cost	Low	High	Medium
Convenience of Use	High	Low	Medium
Model Customisation Requirement	Low	High	Medium
Hallucination	Low	Medium	High
Frequency of Updates	Low	Variable	High

Advanced Methodologies

Agent design

Methodological approaches using LLMs

LLM Agents

Applications

What downstream tasks are LLMs spread to?

- 109 application cases in Software Engineering
- 68 application cases in Industrial Automation

Applications of LLMs in industrial automation and software engineering

Applications in Software engineering Classification Criteria

During the classification process, **ChatGPT-4** is utilized to evaluate **the relevance of each application case to these categories**.

Each case was scored on a scale from 0 to 10.

If an application case had **scores of 8 or higher in other categories**, those categories were also noted.

This approach ensures that while each case is categorized into its primary functional area, its relevance to other areas is also acknowledged.

Applications of LLMs in industrial automation and software engineering

Applications in Software engineering Overview

- Ma W, Mi Q, Yan X, et al. Large language models play starcraft ii: Benchmarks and a chain of summarization approach[J]. arXiv preprint arXiv:2312.11865, 2023.
- Qian C, Cong X, Yang C, et al. Communicative agents for software development[J]. arXiv preprint arXiv:2307.07924, 2023.

Applications in Industrial Automation

- Classification based on function
- Classification based on role

Applications of LLMs in industrial automation and software engineering

Applications in Industrial Automation Engineering Two different classification methods

Function-based Classification

This method categorizes the applications based on the specific functions that LLMs perform within industrial automation, highlighting their distinct contributions.

Role-based Classification

This approach analyzes each application case to determine which real-world jobs can be supplemented or replaced by LLMs, illustrating their practical impact on workforce dynamics.

• Wang L, Ling Y, Yuan Z, et al. Gensim: Generating robotic simulation tasks via large language models[J]. arXiv preprint arXiv:2310.01361, 2023.

• Wu J, Antonova R, Kan A, et al. Tidybot: Personalized robot assistance with large language models[J]. Autonomous Robots, 2023, 47(8): 1087-1102. University of Stuttgart, IAS

Role-based Classification

Which real-world job can be supplemented or replaced by LLMs?

Applications of LLMs in industrial automation and software engineering

How LLM can assist human engineer? Or even replace some jobs? Overview

Role	Number of relevant application cases
Automation Engineer	59
Control Systems Engineer	59
Robotic Engineer	30
Test Engineer	13
Systems Integration Specialist	10
Simulation Engineer	7
Documentation Specialist	6
Maintenance Technician	5
Data Analyst	5
Systems Modeling Engineer	3
R&D Engineer	1

Evaluation

How are LLMs evaluated in SE and IAE?

- 27 Metrics
- 110 Benchmarks

Evaluation of LLMs and LLM-powered Systems

Metrics Table 21: Robustness and Fairness Metrics

Та	ble		Metrics	Key Characteristics				
_		1	HEQ[251]	Equivalence to human performance				
Cate 1		2	Expected calibration error	or[252] Quality of model calibration				
2		3	MCC[253]	Quality of classification				
ask-		4	AUC [253]	Discriminatory power in binary classification				
_angi 3		5	ASR(Attack Success Ra	ate)[254] Adversarial robustness of LLMs				
Robu 4	6 <u>lo</u>		loU[251]	Overlap between predicted and actual spans				
Efficie	C Table 22: Efficiency and Performance Metrics							
5		2 AvgPassRatio[99]		Key Characteristics				
6 7	Ac			ing, the ability of information tetrieval Average success rate across multiple attempts				
8 9		c c	B ES(Edit Similarity)[79]	Edit distance similarity of text				
5		° 4	4 WAV(Weighted Average	e Value)[190] Word alignment accuracy				
		ę	5 Proof success rate	Proof success rate				
_	_			Inference Time				
N	Machine tramelation, sentiment analysissior summarization							

Benchmark

- Model-level Benchmarks
- Applications-level Benchmarks

Evaluation of LLMs and LLM-powered Systems

Benchmarks implementation

- The collected benchmarks are categorized into two groups: **Model-level benchmarks** and **applications-level benchmarks**.
- Model-level benchmarks: fundamental capabilities of the model

Language understanding, reasoning

• **Applications-level benchmarks**: the model's performance in tasks that closely mimic real-world applications

Code generation, understanding informal dialogue

 56 model-level benchmarks are collected and 54 applications-level benchmarks are collected

Evaluation of LLMs and LLM-powered Systems

Benchmarks

Categories	Number of relevant Benchmarks	Representative Benchmarks
Model-level Benchmarks	56	Language understanding (MMLU), Open-ended questions answer (QuAC), Commensense reasoning (HellaSwag)
Applications-level Benchmarks	54	Tools manipulation (ToolBench), Agent's interaction with users (AgentBench), Code generation (HumanEval)

- MMLU Massive Multitask Language Understanding
- QuAC Question Answering in Context
- HellaSwag Commen sense reasoning
- ToolBench Ability to manipulate tools
- AgentBench LLM-as-Agent's reasoning and decision-making abilities
- HumanEval Ability to generate code

Challenges and Future directions

How can LLMs be strengthened and optimzed in SE and IAE?

- Data scarcity
- Deployment
- Multi-modal models

Challenges and Future Directions

Data Scarcity

Lacking datasets specific to industrial processes, difficulty in effective learning and generalization

• Deployment

Resource constraints, the need for low-latency real-time responses, and complex system integration

Multi-modal Models

Aligning information between modalities

Conclusion

Conclusion

- 30 prominent general-purpose LLMs, 177 use cases in software engineering and industrial automation, 27 metrics and 110 benchmarks used for evaluating LLM capabilities.
- Significant potential in applications in software engineering and industrial automation

Code generation, system control, and automation process

• Future research

Robust benchmarks and tests, data scarcity, model hallucination, and the comlexity of downstream tasks

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Haonan Chen

e-mail st175447@stud.uni-stuttgart.de phone +49 (0) 711 685fax +49 (0) 711 685-

University of Stuttgart Institute of Automation and Software Systems Pfaffenwaldring 47, 70550 Stuttgart

