

University of Stuttgart Institute of Industrial Automation and Software Engineering

Speaker:Juntao Lin Supervisor:Yuchen Xia Data:09.09.2024 Transforming Vehicle User Manuals into Interactive AI Chatbot Powered by Large Language Model

Contents

- Introduction
- Background
- Dataset Preparation
- RAG Chatbot
- Achievements
- Evaluation and Result Analysis
- Summary and Outlook

Introduction

- Motivation
 - machines understand and human language generate
 - Ability to handle a wide range of tasks
- Limitation
 - despite generalization capabilities models lack specific domain knowledge
- Objective
 - make general-purpose LLMs specialized
 - by transforming vehicle user manuals into a knowledge base
 - RAG-based chat assistant

Background

State of the art of LLM and RAG

Development Framework and Tools that support RAG

The dataset that support RAG

State of the art

LLM

- Large Language Models (LLMs)
 - Overview
 - versatile tools in AI applications

Model Name	Publishing Agency	Parameters	Token Limit	Model Structure	Open Source
GPT-3.5	OpenAl	175B	4096	GPT-3	no
GPT-4	OpenAl	1.76T	128k	GPT-4	no
T5	Google	13B	-	T5-style	yes
PaLM	Google	540B	8192	GPT-style	no
Chinchilla	DeepMind	70B	-	GPT-style	no
LLaMA	Meta	7B-65B	2048-16k	GPT-style	yes

State of the art

RAG

- Retrieval-Augmented Generation (RAG)
 - Addresse the limitations of LLMs in domain-specific knowledge
 - Allow to **retrieve relevant documents** from an **external database**
 - Provide more precise and contextually relevant answers

Development Framework and Tools that support RAG

- Overview of development frameworks
 - Langchain: a framework designed for building applications powered by LLMs

- Langsmith: debugging, testing, and evaluating the performance of these applications.
- Programming Language: Python, HTML
- **Development environment**:Pycharm University of Stuttgart, IAS

The dataset that support RAG

Vehicle User Manuals as a Knowledge Base

ATTO 3 OM 2024/2/22 20:00 WPS PDF 文档 36,377 KB	BYD ATTO 3 OM 2024
DOLPHIN OM 2024/2/22 19:59 WPS PDF 文档 31,632 KB	BYD DOLPHIN OM 2024
HAN EV OM 2024/2/22 19:58 WPS PDF 文档 57,767 KB	BYD HAN EV OM 2024
EAL OM 2024/2/22 19:59 WPS PDF 文档 62,985 KB	BYD SEAL OM 2024
DA CX-5 OM 2024/3/10 21:33 WPS PDF 文档 17,789 KB	2024 MAZDA CX-5 OM
-AMPERA E OM 2024/2/22 20:06 WPS PDF 文档 6,857 KB	OPEL-AMPERA E OM 2024
MOKKA X OM 2024/2/22 20:09 WPS PDF 文档 7,023 KB	OPEL-MOKKA X OM 2024
EV OM 2024/2/22 19:57 WPS PDF 文档 63,090 KB	2024 2024 2024
A Model 3 OM 2024/2/22 20:25 WPS PDF 文档 8,365 KB	TESLA Model 3 OM 2024
Model S OM 2024/2/22 20:24 WPS PDF 文档 8,570 KB	TESLA Model S OM 2024
Model X OM 2024/2/22 20:26 WPS PDF 文档 10,452 KB	TESLA Model X OM 202-
Model X OM 2024/2/22 20:26 WPS PDF 文档 10,452 KB Model Y OM 2024/2/22 20:25 WPS PDF 文档 9,944 KB	Image: TESLA Model X OM 202- TESLA Model Y OM 202-

Comprehensive documents provided by manufacturers

- operation
- maintenance
- safety features

Contents

T

Overview	3	Full Self-Driving (Beta)	106
Exterior	3	Autopark	
Interior Overview	4	Summon	112
Touchscreen	6	Smart Summon	114
Interior Electronics	11	Limitations and Warnings	116
Car Status			
Voice Commands		Active Safety Features	122
Cameras	18	Lane Assist	122
		Collision Avoidance Assist	125
Opening and Closing	19	Speed Assist	128
Keys	19	Cabin Camera	129
Doors	22		
Windows		Dashcam, Sentry, and Security	130
		Safety & Security Settings	130
Storage Areas		Dashcam	132
Rear Trunk		Sentry Mode	
Front Trunk		USB Drive Requirements for Recording Videos	
Interior Storage			
-		Climate	137
Seating and Safety Restraints	30	Operating Climate Controls	
Front and Rear Seats	30	Adjusting the Front and Rear Vents	
Seat Belts	33	Cold Weather Best Practices	144
Child Safety Seats	36	Hot Weather Best Practices	147
Airbags	42		
An bugs		Navigation and Entertainment	148
Connectivity		Maps and Navigation	
Mobile App		Media	
Wi-Fi.		Theater, Arcade, and Toybox	156
Bluetooth			
Phone, Calendar, and Web Conferencing		Charging and Energy Consumption	159
Smart Garage		Electric Vehicle Components	
		High Voltage Battery Information	
Driving		Charging Instructions	
Starting and Powering Off	59	Scheduled Charging and Scheduled Departure	
Steering Wheel	.61	Getting Maximum Range	
Mirrors			
Shifting		Maintenance	172
Lights		Software Updates	
Wipers and Washers		Maintenance Service Intervals	
Braking and Stopping		Tire Care and Maintenance	176
Park Assist	77	Cleaning	183
Vehicle Hold		Windshield Wiper Blades, Jets and Fluid	
Traction Control	80	Jacking and Lifting	189
Acceleration Modes	81	Parts and Accessories	190
Driver Profiles		Do It Yourself Maintenance	
Trip Information	84		
Rear Facing Camera(s)		Specifications	194
Pedestrian Warning System	86	Identification Labels	
		Vehicle Loading	
Autopilot		Dimensions	
About Autopilot		Subsystems	
Autopilot Features		Wheels and Tires	
Traffic Light and Stop Sign Control			

Dataset preparation

Chanllenges in PDF Parsing

Common Methods for Parsing PDF

Chunks of Raw Corpus

Chanllenges in PDF Parsing

- Inaccuracies in text extraction and layout recognition.
 - text misalignment
 - incorrect table parsing
 - · loss of structural information during extraction

Common Methods for Parsing PDF

- Rule-based Approach:
 - rely on rules to extract content from PDFs.
 - for simple layouts
 - struggle with complex documents.
 - E.g.:
 - pypdf,pdfplumber,ReportLab
- Based on Deep Learning Models:
 - Leverage object detection and OCR models
 - better understand the structure of a document
 - require significant computational resources.
 - E.g.:
 - Unstructured,Layout-parser,PP-StructureV2
- Based on Multimodal Large Models:
 - combine text and image processing capabilities
 - provide a more comprehensive solution for parsing complex documents.
 - E.g.:
 - GPT4-V,OCR model with GPT4/GPT3.5

Chunks of Raw Corpus

- Import libraries:
 - PyPDF2, langchain_community.document_loaders, RecursiveCharacterTextSplitter
- Define functions:
 - 'get_pdf_text', 'get_text_chunks'
- Process the PDF
 - print chunks

1	from PyPDF2 import PdfReader
2	<pre>from langchain_community.document_loaders import PyPDFLoader</pre>
3	#from langchain.text_splitter import CharacterTextSplitter
4	<pre>from langchain_text_splitters import RecursiveCharacterTextSplitter</pre>
5	<pre>from langchain_community.embeddings import OpenAIEmbeddings</pre>
6	<pre>from langchain_community.vectorstores import FAISS</pre>
7	
18	<pre>def get_pdf_text(pdf_docs):</pre>
19	
20	
21	for pdf in pdf_docs:
22	pdf_reader = PdfReader(pdf)
23	pages = pdf_reader.pages
24	for page in pages:
25	<pre>text += page.extract_text()</pre>
26	
27	
28	
29	<pre>def get_text_chunks(text):</pre>
30	
31	<pre>text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)</pre>
32	<pre>chunks = text_splitter.split_text(text)</pre>
33	
34	return chunks
46	pdf_doces = ['TESLA Model S OM.pdf']
47	<pre>text = get_pdf_text(pdf_doces)</pre>
48	chunks = get_text_chunks(text)
49	<pre>print(len(chunks),len(chunks[0]))</pre>
50	print(chunks[0])

RAG Chatbot

Embedding in Vector Database

Retriever Implementation

Prompt Engineering

Embedding in Vector Database

- Defining Function:
 - 'get vectorstore'
 - Embeddings Model:text-embedding-3-small
 - Creating the Vector Store: FAISS
 - Return Statement

Indexin

🔓 🌐 🖪 Parsing Parsed Documents

Augo ont Prompt

Ð Relever Query

Retriever Implementation

- Conversational Retrieval Chain
- Parameters
 - Chat_model:gpt3.5,llama2:7B,mistral:7B,llama3:8B
 - Search Type:Cosine Similarity
 - Search Parameters:return the top 5 most similar results
 - Memory:remember previous interactions
 - · Verbose:enables detailed logging or output

17	conversation_chain = ConversationalRetrievalChain.from_llm(llm=chat_model,
	retriever=vectorstore.as_retriever(search_type='similarity'_search_kwargs={'k':5}),
	memory-memory,
	verbose=True)

Prompt Engineering

- How prompts are structured for a question-answering system related to car user manuals?
- System Prompt
 - Role Definition
 - Use of Context:
 - Handling Unknowns
 - Answer Length
 - Context Insertion
- User Prompt

Achievements

User Application Interface of Chatbot

User Application Interface

• Tools Used:Streamlit and Gradio for interface development.

Chatbot with your car user manuals

D

- Chatbot developed using Gradio
 - User Input Section:
 - Text Input Box
 - Model Selection Dropdown
 - Submit and Clear Buttons
 - Response Section:
 - Response Box
 - Context Box

input your question and i will answer you based on the context of your car user manuals	
user_question	response
please input your question here	
	context
chat_model	
Ilama2:7b	
Clear Submit	Flag

通过 API 使用 🥖 🔹 使用 Gradio 构建 🧇

User Application Interface

- Tools Used:Streamlit and Gradio for interface development.
 - · Chatbot developed using Streamlit
 - PDF Upload Section:
 - upload PDFs
 - File Management
 - Chat Interface:
 - Question Input
 - Response Display

组织 -	新建文件突					111 -	• •	
WPS	云盘 ^ 名!	称	停改日期	建型	大小			^
and click on		nagged	2024/5/26 10:22	JatBraine DuChar	2	VP.		r user manuals
- Unei	Drive - Pers	app_gpt	2024/6/14 22:26	JetBrains DyChar	2	KD KD		i user munuuus
s here 📃 此甩	19 19 19 19 19 19 19 19 19 19 19 19 19 1	app_nama	2024/5/30 0-26	JetBrains PyChar	2	KB		
3D	对象 四	conversationalchain	2024/5/27 22-06	JetBrains DuChar		KB		
10 1	0	dataset	2024/6/24 15-55	JetBrains DyChar	38	KB		3
10 Miles		embedding	2024/0/8 17:24	letBrains DuChar	2	KB		2
· 27		aval	2024/0/1 19:25	letBrains DuChar	2	KB		
1 X8		Evaluation	2024/9/1 17:47	letBrains PyChar	5	KB		
₹ 7	2	Evaluator	2024/5/19 12:45	letBrains PuChar		KB		
音牙	fi Pe	experiment	2024/6/24 21:09	letBrains PyChar	5	KB		
	Ω Γ	FAISS local db	2024/4/24 21-07	letBrains PuChar	2	KB		
L 本文	8磁盘 (C:)	htmlTemplates	2024/5/23 17:22	JetBrains PyChar	2	KB		
本t	8磁盘 (D:)	RAG Chain	2024/6/19 12:45	JetBrains PyChar	3	KB		te-packages\streamlit\runtime\scri
	10 (m28 (F-)	RAG simple implementation	2024/4/26 12:58	JetBrains PyChar	3	KB		
- 43	的现象 (G:) ¥ 🧕	TESLA ModelS OM	2024/2/22 20:24	WPS PDF 文档	8,570	KB		line 62, in <module></module>
	文件名(N);	TESLA Model S OM			× 8	有文件	~	
								line 47, in main
						打卅(0)	取消	s)
				File "D:\pytho vectorstor File "D:\pytho return cls ^^^ File "D:\pytho index = f a	ncoding e = FAI ^^^ ncoding from ^^^^^ ncoding iss.Ind	<pre>{\RAGdev2.0\emb iSS.from_texts(</pre>	edding.; texts=cl ^^^^^^^ nv\Lib\: mv\Lib\: mbeddin	yr, line 39, in get_vectorstore unucks, embeding=smoldling=smoldling=smoldling site=packages\langchain_community\v site=packages\langchain_community\v este=packages\langchain_community\v

Deploy

Evaluation and Result Analysis

Evaluation Dataset preparation

Evaluation Indicators

Overall Performance Scores of Chatbots

Performance Scores of Chatbots in 3 Querytypes

Low Score Attribution

Evaluation Dataset preparation

- Evaluation Dataset(total 50 questions)
 - five types of User Group
 - Car owners and drivers (10questions)
 - Automobile maintenance engineers(10questions)
 - Car salespersons(10questions)
 - Car enthusiasts and researchers(10questions)
 - Car rental companies(10questions)
 - three types of User Question
 - unanswerable questions(type1-15questions)
 - half-answerable questions(type2-17questions)
 - answerable questions(type3-18questions)

Evaluation Indicators

- Faithfulness (Result correctness):
 - Measures the factual consistency of the generated answer given the context.
- Answer Relevancy(Stick to the topic):
 - How relevant the answer is to the question.
- Context Relevancy(Retrieve hit rate):
 - The relevance of the retrieved context to the original question
- Human evaluation: Overall evaluation based on answer helpfulness.

Overall Performance Scores of Chatbots

LLM integrated in chatbot	Result correctness (Faithfulness)	Stick to the topic (Answer_relevancy_score)	Human_evaluation_score
GPT3.5	0.67	0.70	0.56
Llama2:7B	0.57	0.87 🙂	0.67
Mistral:7B	0.73 😇	0.70	0.58
Llama3:8B	0.47	0.40	0.69 🙂

- Complicated & controversial evaluation result
- Result correctness:mistral:7B scored the highest
- Stick to the topic: Ilama2:7B performed best
- Human evaluation:gpt3.5 were surprisingly not good

Performance Scores of Chatbots in 3 Querytypes

	Querytype		Stick to the topic	Retrieve hit rate
GPT3.5	unanswerable question	0.49	0.38	0.04
	half-answerable question	0.72	0.79	0.06
	answerable question	0.88	0.88	0.11
Llama2:7B	unanswerable question	0.34	0.74	0.04
	half-answerable question	0.64	0.90	0.06
	answerable question	0.71	0.95	0.12
Mistral:7B	unanswerable question	0.59	0.49	0.04
	half-answerable question	0.80	0.68	0.06
	answerable question	0.66	0.88	0.12
Llama3:8B	unanswerable question	0.24	0.12	0.04
	half-answerable question	0.54	0.56	0.06
	answerable question	0.49	0.53	0.12

Low score attribution

- Low score attribution and Manual labeling
 - Not retrieved(R1): the relevant information is not present
 - Missed the top ranked documents(R2):the relevant information exists but ranks too low
 - Not used by generative model(R3):correct information have not been used to produce responses
 - Noise in retrieved information(R4): irrelevant or low-quality content retrieved

Low Score Attribution

• Low Score Attribution For All half-answerable question

	R1: Not retrieved	R2: Missed the top ranked documents	R3:Not used by generative model	R4: Noise in retrieved information
Score 1: Result correctness	0.82	not observed	0.96	0.96
Score 2: Stick to the topic	not observed	1.00	not observed	0.88
Score3:Retrieve hit rate	0.70	0.94	0.91	0.46

• Low Score Attribution For All answerable question

	R1: Not retrieved	R2: Missed the top ranked documents	R3:Not used by generative model	R4:Noise in retrieved information
Score 1: Resualt correctness	0.61	not observed	0.75	0.93
Score 2: Stick to the topic	not observed	0.90	not observed	1.00
Score3:Retrieve hit rate	0.52	0.95	0.86	0.45
University of Stuttgart, IAS				09/09/2024 26

Low Score Attribution

Comparison of low score attribution for half-answerable question of each model

LLM integrated in chatbot	scoreclass	Not retrieved	Missed the top ranked documents	Not used by generative model	Noise in retrieved information
GPT3.5	Resualt correctness	0.80	not observed	1.00	1.00
	Stick to the topic	not observed	1.00	not observed	1.00
	Retrieve hit rate	0.63	0.94	0.88	0.31
Llama2:7B	Resualt correctness	1.00	not observed	1.00	1.00
	Stick to the topic	not observed	1.00	not observed	0.00
	Retrieve hit rate	0.80	0.93	0.93	0.47
Mistral:7B	Resualt correctness	0.83	not observed	1.00	1.00
	Stick to the topic	not observed	1.00	not observed	1.00
	Retrieve hit rate	0.69	1.00	0.94	0.50
Llama3:8B	Resualt correctness	0.89	not observed	1.00	1.00
	Stick to the topic	not observed	1.00	not observed	0.86
	Retrieve hit rate	0.69	0.94	0.88	0.56

Low Score Attribution

• Comparison of low score attribution for answerable question of each model

LLM integrated in chatbot	scoreclass	Not retrieved	Missed the top ranked documents	Not used by generative model	Noise in retrieved information
GPT3.5	Resualt correctness	0.50	not observed	1.00	1.00
	Stick to the topic	not observed	1.00	not observed	0.88
	Retrieve hit rate	0.33	0.87	1.00	0.13
Llama2:7B	Resualt correctness	0.88	not observed	0.88	0.88
	Stick to the topic	not observed	0.00	not observed	0.00
	Retrieve hit rate	0.67	0.73	0.93	0.40
Mistral:7B	Resualt correctness	0.63	not observed	0.50	1.00
	Stick to the topic	not observed	1.00	not observed	1.00
	Retrieve hit rate	0.60	1.00	0.53	0.53
Llama3:8B	Resualt correctness	0.40	not observed	0.80	1.00
	Stick to the topic	not observed	0.88	not observed	1.00
	Retrieve hit rate	0.54	1.00	1.00	0.77

Summary and Outlook

Summary and Outlook

- Summary of Achievements:
 - successfully verified the effectiveness of RAG technology
 - transforming static vehicle manuals into a dynamic, interactive LLM chatbot
 - paves the way for more innovative applications of LLMs in specialized domains
- Challenges and Future Work:
 - focus on improving the chatbot's ability.
 - enhance Contextual Understanding
 - dynamic Content Updating
 - feedback Loop Mechanism
 - improved Prompt Engineering

Question and Answer

University of Stuttgart Institut of Industrial Automation and Software Engineering

Thank you!

Juntao Lin

e-mail st176526@stud.uni-stuttgart.de phone +49 (0) 711 685- 15773217446 fax +49 (0) 711 685-

University of Stuttgart Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70550 Stuttgart

