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• Motivation

• machines understand and human language generate

• Ability to handle a wide range of tasks

• Limitation

• despite generalization capabilities models lack specific domain knowledge

• Objective

• make general-purpose LLMs specialized 

• by transforming vehicle user manuals into a knowledge base

• RAG-based chat assistant
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Background

State of the art of LLM and RAG

Development Framework and Tools that support RAG

The dataset that support RAG
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LLM

State of the art

• Large Language Models (LLMs)

• Overview 

• versatile tools in AI applications

Model 

Name 

Publishing 

Agency 
Parameters Token Limit

Model 

Structure

Open 

Source

GPT-3.5 OpenAI 175B 4096 GPT-3 no

GPT-4 OpenAI 1.76T 128k GPT-4 no

T5 Google 13B - T5-style yes

PaLM Google 540B 8192 GPT-style no

Chinchilla DeepMind 70B - GPT-style no

LLaMA Meta 7B-65B 2048-16k GPT-style yes
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• Retrieval-Augmented Generation (RAG)

• Addresse the limitations of LLMs in domain-specific knowledge 

• Allow to retrieve relevant documents from an external database

• Provide more precise and contextually relevant answers

• Workflow of the RAG pipeline.

• Query

• Retrieve

• Augment

• Generate

• Response
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State of the art

RAG
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• Overview of development frameworks

• Langchain: a framework designed for building applications powered by LLMs

• Langsmith: debugging, testing, and evaluating the performance of these 

applications.

• Programming Language:Python, HTML

• Development environment:Pycharm
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Development Framework and Tools that support RAG
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Vehicle User Manuals as a Knowledge Base

The dataset that support RAG

• Comprehensive documents provided by 

manufacturers

• operation

• maintenance

• safety features
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Dataset preparation
Chanllenges in PDF Parsing

Common Methods for Parsing PDF

Chunks of Raw Corpus



• Inaccuracies in text extraction and layout recognition.

• text misalignment

• incorrect table parsing

• loss of structural information during extraction
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Chanllenges in PDF Parsing
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• Rule-based Approach: 

• rely on rules to extract content from PDFs.

• for simple layouts

• struggle with complex documents.

• E.g.:

• pypdf,pdfplumber,ReportLab

• Based on Deep Learning Models:

• Leverage object detection and OCR models 

• better understand the structure of a document

• require significant computational resources.

• E.g.:

• Unstructured,Layout-parser,PP-StructureV2 

• Based on Multimodal Large Models:

• combine text and image processing capabilities

• provide a more comprehensive solution for parsing complex documents.

• E.g.:

• GPT4-V,OCR model with GPT4/GPT3.5
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Common Methods for Parsing PDF

09/09/2024



• Import libraries:

• PyPDF2,langchain_community.document_loaders,RecursiveCharacterTextSplitter

• Define functions: 

• ‘get_pdf_text’, ‘get_text_chunks’

• Process the PDF

• print chunks
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Chunks of Raw Corpus

…
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RAG Chatbot
Embedding in Vector Database

Retriever Implementation

 Prompt Engineering



• Defining Function:

• ‘get_vectorstore’ 

• Embeddings Model:text-embedding-3-small

• Creating the Vector Store:FAISS

• Return Statement
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Embedding in Vector Database
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• Conversational Retrieval Chain

• Parameters 

• Chat_model:gpt3.5,llama2:7B,mistral:7B,llama3:8B

• Search Type:Cosine Similarity

• Search Parameters:return the top 5 most similar results 

• Memory:remember previous interactions

• Verbose:enables detailed logging or output
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Retriever Implementation

09/09/2024



• How prompts are structured for a question-answering system related to car user 

manuals?

• System Prompt

• Role Definition

• Use of Context: 

• Handling Unknowns

• Answer Length

• Context Insertion

• User Prompt 

• User Question Insertion
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Prompt Engineering
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Achievements
User Application Interface of Chatbot



• Tools Used:Streamlit and Gradio for interface development.

• Chatbot developed using Gradio

• User Input Section:

• Text Input Box

• Model Selection Dropdown

• Submit and Clear Buttons

• Response Section:

• Response Box

• Context Box 
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User Application Interface
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• Tools Used:Streamlit and Gradio for interface development.

• Chatbot developed using Streamlit

• PDF Upload Section:

• upload PDFs

• File Management

• Chat Interface:

• Question Input

• Response Display
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User Application Interface
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Evaluation and 
Result Analysis
Evaluation Dataset preparation

Evaluation Indicators

Overall Performance Scores of Chatbots

Performance Scores of Chatbots in 3 Querytypes

Low Score Attribution



• Evaluation Dataset(total 50 questions)

• five types of User Group

• Car owners and drivers (10questions)

• Automobile maintenance engineers(10questions)

• Car salespersons(10questions)

• Car enthusiasts and researchers(10questions)

• Car rental companies(10questions)

• three types of User Question

• unanswerable questions(type1-15questions)

• half-answerable questions(type2-17questions)

• answerable questions(type3-18questions)
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Evaluation Dataset preparation
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• Faithfulness (Result correctness): 

• Measures the factual consistency of the generated answer given the context.

• Answer Relevancy(Stick to the topic): 

• How relevant the answer is to the question. 

• Context Relevancy(Retrieve hit rate): 

• The relevance of the retrieved context to the original question

• Human evaluation: Overall evaluation based on answer helpfulness.
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Evaluation Indicators 
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LLM integrated 

in chatbot

Result correctness 

(Faithfulness)

Stick to the topic 

(Answer_relevancy_score)

Human_evaluation_score

GPT3.5 0.67 0.70 0.56

Llama2:7B 0.57 0.87 0.67

Mistral:7B 0.73 0.70 0.58

Llama3:8B 0.47 0.40 0.69
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Overall Performance Scores of Chatbots

• Complicated & controversial evaluation result

• Result correctness:mistral:7B scored the highest

• Stick to the topic: llama2:7B performed best

• Human evaluation:gpt3.5 were surprisingly not good

09/09/2024



Querytype Result correctness Stick to the topic Retrieve hit rate

GPT3.5 unanswerable question 0.49 0.38 0.04

half-answerable question 0.72 0.79 0.06

answerable question 0.88 0.88 0.11

Llama2:7B unanswerable question 0.34 0.74 0.04

half-answerable question 0.64 0.90 0.06

answerable question 0.71 0.95 0.12

Mistral:7B unanswerable question 0.59 0.49 0.04

half-answerable question 0.80 0.68 0.06

answerable question 0.66 0.88 0.12

Llama3:8B unanswerable question 0.24 0.12 0.04

half-answerable question 0.54 0.56 0.06

answerable question 0.49 0.53 0.12
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Performance Scores of Chatbots in 3 Querytypes
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Low score attribution

• Low score attribution and Manual labeling

• Not retrieved(R1):  the relevant information is not present

• Missed the top ranked documents(R2):the relevant information exists but ranks too 

low

• Not used by generative model(R3):correct information have not been used to 

produce responses

• Noise in retrieved information(R4):  irrelevant or low-quality content retrieved
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R1: Not 

retrieved

R2: Missed the top 

ranked documents

R3:Not used by 

generative model

R4: Noise in 

retrieved information

Score 1: Result 

correctness

0.82 not observed 0.96 0.96

Score 2: Stick to 

the topic

not observed 1.00 not observed 0.88

Score3:Retrieve 

hit rate

0.70 0.94 0.91 0.46
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Low Score Attribution

• Low Score Attribution For All answerable question

•

• Low Score Attribution For All half-answerable question

R1: Not 

retrieved

R2: Missed the top 

ranked documents

R3:Not used by 

generative model

R4:Noise in retrieved 

information

Score 1: Resualt 

correctness

0.61 not observed 0.75 0.93

Score 2: Stick to 

the topic

not observed 0.90 not observed 1.00

Score3:Retrieve 

hit rate

0.52 0.95 0.86 0.45
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Low Score Attribution
• Comparison of low score attribution for half-answerable question of each model

LLM integrated in 

chatbot

scoreclass Not retrieved Missed the top ranked 

documents

Not used by 

generative model

Noise in retrieved 

information

GPT3.5 Resualt correctness 0.80 not observed 1.00 1.00

Stick to the topic not observed 1.00 not observed 1.00

Retrieve hit rate 0.63 0.94 0.88 0.31

Llama2:7B Resualt correctness 1.00 not observed 1.00 1.00

Stick to the topic not observed 1.00 not observed 0.00

Retrieve hit rate 0.80 0.93 0.93 0.47

Mistral:7B Resualt correctness 0.83 not observed 1.00 1.00

Stick to the topic not observed 1.00 not observed 1.00

Retrieve hit rate 0.69 1.00 0.94 0.50

Llama3:8B Resualt correctness 0.89 not observed 1.00 1.00

Stick to the topic not observed 1.00 not observed 0.86

Retrieve hit rate 0.69 0.94 0.88 0.56
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Low Score Attribution
• Comparison of low score attribution for answerable question of each model

LLM integrated in 

chatbot

scoreclass Not retrieved Missed the top ranked 

documents

Not used by 

generative model

Noise in retrieved 

information

GPT3.5 Resualt correctness 0.50 not observed 1.00 1.00

Stick to the topic not observed 1.00 not observed 0.88

Retrieve hit rate 0.33 0.87 1.00 0.13

Llama2:7B Resualt correctness 0.88 not observed 0.88 0.88

Stick to the topic not observed 0.00 not observed 0.00

Retrieve hit rate 0.67 0.73 0.93 0.40

Mistral:7B Resualt correctness 0.63 not observed 0.50 1.00

Stick to the topic not observed 1.00 not observed 1.00

Retrieve hit rate 0.60 1.00 0.53 0.53

Llama3:8B Resualt correctness 0.40 not observed 0.80 1.00

Stick to the topic not observed 0.88 not observed 1.00

Retrieve hit rate 0.54 1.00 1.00 0.77
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Summary and Outlook



• Summary of Achievements:

• successfully verified the effectiveness of RAG technology 

• transforming static vehicle manuals into a dynamic, interactive LLM chatbot

• paves the way for more innovative applications of LLMs in specialized domains

• Challenges and Future Work:

• focus on improving the chatbot’s ability. 

• enhance Contextual Understanding

• dynamic Content Updating

• feedback Loop Mechanism

• improved Prompt Engineering
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Summary and Outlook
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Question and Answer



e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Thank you!

Juntao Lin

Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70550 Stuttgart

st176526@stud.uni-stuttgart.de

Institut of Industrial Automation

and Software Engineering

15773217446
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